Mathematical Logic Quarterly最新文献

筛选
英文 中文
Rogers semilattices of limitwise monotonic numberings 有限单调数的罗杰斯半格
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-03-22 DOI: 10.1002/malq.202100077
Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva
{"title":"Rogers semilattices of limitwise monotonic numberings","authors":"Nikolay Bazhenov,&nbsp;Manat Mustafa,&nbsp;Zhansaya Tleuliyeva","doi":"10.1002/malq.202100077","DOIUrl":"10.1002/malq.202100077","url":null,"abstract":"<p>Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>⊂</mo>\u0000 <mi>P</mi>\u0000 <mo>(</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Ssubset P(omega )$</annotation>\u0000 </semantics></math> is limitwise monotonic (l.m.) if every set <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ν</mi>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$nu (k)$</annotation>\u0000 </semantics></math> is the range of a limitwise monotonic function, uniformly in <i>k</i>. The set of all l.m. numberings of <i>S</i> induces the Rogers semilattice <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mi>l</mi>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>S</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$R_{lm}(S)$</annotation>\u0000 </semantics></math>. The semilattices <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mi>l</mi>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>S</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$R_{lm}(S)$</annotation>\u0000 </semantics></math> exhibit a peculiar behavior, which puts them <i>in-between</i> the classical Rogers semilattices (for computable families) and Rogers semilattices of <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Σ</mi>\u0000 <mn>2</mn>\u0000 <mn>0</mn>\u0000 </msubsup>\u0000 <annotation>$Sigma ^0_2$</annotation>\u0000 </semantics></math>-computable families. We show that every Rogers semilattice of a <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>Σ</mi>\u0000 <mn>2</mn>\u0000 <mn>0</mn>\u0000 </msubsup>\u0000 <annotation>$Sigma ^0_2$</annotation>\u0000 </semantics></math>-computable family is isomorphic to some semilattice <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mi>l</mi>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"119020491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some structural similarities between uncountable sets, powersets and the universe 不可数集、幂集和全域之间的结构相似性
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-03-06 DOI: 10.1002/malq.202100010
Athanassios Tzouvaras
{"title":"Some structural similarities between uncountable sets, powersets and the universe","authors":"Athanassios Tzouvaras","doi":"10.1002/malq.202100010","DOIUrl":"10.1002/malq.202100010","url":null,"abstract":"<p>We establish some similarities/analogies between uncountable cardinals or powersets and the class <i>V</i> of all sets. They concern mainly the Boolean algebras <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>(</mo>\u0000 <mi>κ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {P}(kappa )$</annotation>\u0000 </semantics></math>, for a regular cardinal κ, and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mo>(</mo>\u0000 <mi>V</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {C}(V)$</annotation>\u0000 </semantics></math> (the class of subclasses of the universe <i>V</i>), endowed with some ideals, especially the ideal <math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>κ</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>&lt;</mo>\u0000 <mi>κ</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$[kappa ]^{&lt;kappa }$</annotation>\u0000 </semantics></math> for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>(</mo>\u0000 <mi>κ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {P}(kappa )$</annotation>\u0000 </semantics></math>, and the ideal of sets <i>V</i> for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mo>(</mo>\u0000 <mi>V</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {C}(V)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76422188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An extension of Jónsson-Tarski representation and model existence in predicate non-normal modal logics 谓词非正态模态逻辑中Jónsson-Tarski表示和模型存在性的扩展
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-19 DOI: 10.1002/malq.202100018
Yoshihito Tanaka
{"title":"An extension of Jónsson-Tarski representation and model existence in predicate non-normal modal logics","authors":"Yoshihito Tanaka","doi":"10.1002/malq.202100018","DOIUrl":"10.1002/malq.202100018","url":null,"abstract":"<p>We give an extension of the Jónsson-Tarski representation theorem for both normal and non-normal modal algebras so that it preserves countably many infinite meets and joins. In order to extend the Jónsson-Tarski representation to non-normal modal algebras we consider neighborhood frames instead of Kripke frames just as Došen's duality theorem for modal algebras, and to deal with infinite meets and joins, we make use of Q-filters, which were introduced by Rasiowa and Sikorski, instead of prime filters. By means of the extended representation theorem, we show that every predicate modal logic, whether it is normal or non-normal, has a model defined on a neighborhood frame with constant domains, and we give a completeness theorem for some predicate modal logics with respect to classes of neighborhood frames with constant domains. Similarly, we show a model existence theorem and a completeness theorem for infinitary modal logics which allow conjunctions of countably many formulas.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86728901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum B-modules 量子B-modules
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-15 DOI: 10.1002/malq.202100029
Xia Zhang, Wolfgang Rump
{"title":"Quantum B-modules","authors":"Xia Zhang,&nbsp;Wolfgang Rump","doi":"10.1002/malq.202100029","DOIUrl":"10.1002/malq.202100029","url":null,"abstract":"<p>Quantum B-algebras are partially ordered algebras characterizing the residuated structure of a quantale. Examples arise in algebraic logic, non-commutative arithmetic, and quantum theory. A quantum B-algebra with trivial partial order is equivalent to a group. The paper introduces a corresponding analogue of quantale modules. It is proved that every quantum B-module admits an injective envelope which is a quantale module. The injective envelope is constructed explicitly as a completion, a multi-poset version of the completion of Dedekind and MacNeille.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77483843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CP-generic expansions of models of Peano Arithmetic 皮亚诺算术模型的cp -泛型展开
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-11 DOI: 10.1002/malq.202100051
Athar Abdul-Quader, James H. Schmerl
{"title":"CP-generic expansions of models of Peano Arithmetic","authors":"Athar Abdul-Quader,&nbsp;James H. Schmerl","doi":"10.1002/malq.202100051","DOIUrl":"10.1002/malq.202100051","url":null,"abstract":"<p>We study notions of genericity in models of <math>\u0000 <semantics>\u0000 <mi>PA</mi>\u0000 <annotation>$mathsf {PA}$</annotation>\u0000 </semantics></math>, inspired by lines of inquiry initiated by Chatzidakis and Pillay and continued by Dolich, Miller and Steinhorn in general model-theoretic contexts. These papers studied the theories obtained by adding a “random” predicate to a class of structures. Chatzidakis and Pillay axiomatized the theories obtained in this way. In this article, we look at the subsets of models of <math>\u0000 <semantics>\u0000 <mi>PA</mi>\u0000 <annotation>$mathsf {PA}$</annotation>\u0000 </semantics></math> which satisfy the axiomatization given by Chatzidakis and Pillay; we refer to these subsets in models of <math>\u0000 <semantics>\u0000 <mi>PA</mi>\u0000 <annotation>$mathsf {PA}$</annotation>\u0000 </semantics></math> as CP-generics. We study a more natural property, called strong CP-genericity, which implies CP-genericity. We use an arithmetic version of Cohen forcing to construct (strong) CP-generics with various properties, including ones in which every element of the model is definable in the expansion, and, on the other extreme, ones in which the definable closure relation is unchanged.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72815633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examples of weak amalgamation classes 弱合并类的例子
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-11 DOI: 10.1002/malq.202100037
Adam Krawczyk, Alex Kruckman, Wiesław Kubiś, Aristotelis Panagiotopoulos
{"title":"Examples of weak amalgamation classes","authors":"Adam Krawczyk,&nbsp;Alex Kruckman,&nbsp;Wiesław Kubiś,&nbsp;Aristotelis Panagiotopoulos","doi":"10.1002/malq.202100037","DOIUrl":"10.1002/malq.202100037","url":null,"abstract":"<p>We present several examples of hereditary classes of finite structures satisfying the joint embedding property and the weak amalgamation property, but failing the cofinal amalgamation property. These include a continuum-sized family of classes of finite undirected graphs, as well as an example due to Pouzet with countably categorical generic limit.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85146301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Contents: (Math. Log. Quart. 1/2022) 内容:(数学。日志。夸脱。1/2022)
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-09 DOI: 10.1002/malq.202210000
{"title":"Contents: (Math. Log. Quart. 1/2022)","authors":"","doi":"10.1002/malq.202210000","DOIUrl":"https://doi.org/10.1002/malq.202210000","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202210000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134803954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the algebraization of Henkin-type second-order logic 关于henkin型二阶逻辑的代数化
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-06 DOI: 10.1002/malq.202100057
Miklós Ferenczi
{"title":"On the algebraization of Henkin-type second-order logic","authors":"Miklós Ferenczi","doi":"10.1002/malq.202100057","DOIUrl":"10.1002/malq.202100057","url":null,"abstract":"<p>There is an extensive literature related to the algebraization of first-order logic. But the algebraization of full second-order logic, or Henkin-type second-order logic, has hardly been researched. The question arises: what kind of set algebra is the algebraic version of a Henkin-type model of second-order logic? The question is investigated within the framework of the theory of cylindric algebras. The answer is: a kind of cylindric-relativized diagonal restricted set algebra. And the class of the subdirect products of these set algebras is the algebraization of Henkin-type second-order logic. It is proved that the algebraization of a complete calculus of the Henkin-type second-order logic is a class of a kind of diagonal restricted cylindric algebras. Furthermore, the connection with the non-standard enlargements of standard complete second-order structures is investigated.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74341249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forcing axioms for λ-complete μ + $mu ^+$ -c.c. λ完备μ +$ mu ^+$ -c的强迫公理。
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-03 DOI: 10.1002/malq.201900020
Saharon Shelah
{"title":"Forcing axioms for λ-complete \u0000 \u0000 \u0000 μ\u0000 +\u0000 \u0000 $mu ^+$\u0000 -c.c.","authors":"Saharon Shelah","doi":"10.1002/malq.201900020","DOIUrl":"10.1002/malq.201900020","url":null,"abstract":"<p>We consider forcing axioms for suitable families of μ-complete <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>μ</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 <annotation>$mu ^+$</annotation>\u0000 </semantics></math>-c.c. forcing notions. We show that some form of the condition “<math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>p</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>p</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$p_1,p_2$</annotation>\u0000 </semantics></math> have a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>≤</mo>\u0000 <mi>Q</mi>\u0000 </msub>\u0000 <mi>-</mi>\u0000 <mi>lub</mi>\u0000 </mrow>\u0000 <annotation>$le _{{mathbb {Q}}}text{-}{rm lub}$</annotation>\u0000 </semantics></math> in <math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>${mathbb {Q}}$</annotation>\u0000 </semantics></math>” is necessary. We also show some versions are really stronger than others.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73389675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cut-conditions on sets of multiple-alternative inferences 多可选推理集的切条件
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-02-02 DOI: 10.1002/malq.202000032
Harold T. Hodes
{"title":"Cut-conditions on sets of multiple-alternative inferences","authors":"Harold T. Hodes","doi":"10.1002/malq.202000032","DOIUrl":"10.1002/malq.202000032","url":null,"abstract":"<p>I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set <i>F</i> and a binary relation ⊢ on <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>(</mo>\u0000 <mi>F</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {P}(F)$</annotation>\u0000 </semantics></math>, if ⊢ is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey-Teichmüller Lemma. I then discuss relationships between various cut-conditions in the absence of finitariness or of monotonicity.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"119112159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信