{"title":"Some model theory of \u0000 \u0000 \u0000 Th\u0000 (\u0000 N\u0000 ,\u0000 ·\u0000 )\u0000 \u0000 $operatorname{Th}(mathbb {N},cdot )$","authors":"Atticus Stonestrom","doi":"10.1002/malq.202100049","DOIUrl":"10.1002/malq.202100049","url":null,"abstract":"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>,</mo>\u0000 <mo>·</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathbb {N},cdot )$</annotation>\u0000 </semantics></math>. We give a full characterization of the <math>\u0000 <semantics>\u0000 <mi>⌀</mi>\u0000 <annotation>$varnothing$</annotation>\u0000 </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"288-303"},"PeriodicalIF":0.3,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77779650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}