Determinacy and regularity properties for idealized forcings

Pub Date : 2022-04-27 DOI:10.1002/malq.202100045
Daisuke Ikegami
{"title":"Determinacy and regularity properties for idealized forcings","authors":"Daisuke Ikegami","doi":"10.1002/malq.202100045","DOIUrl":null,"url":null,"abstract":"<p>We show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msub>\n <mi>AD</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}_\\mathbb {R}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msup>\n <mi>AD</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}^+$</annotation>\n </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\n <semantics>\n <msubsup>\n <munder>\n <mi>Δ</mi>\n <mo>˜</mo>\n </munder>\n <mn>1</mn>\n <mn>2</mn>\n </msubsup>\n <annotation>$\\undertilde{\\mathbf {\\Delta }}^2_1$</annotation>\n </semantics></math>. If we do not assume <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <msub>\n <mi>DC</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}_{\\mathbb {R}}$</annotation>\n </semantics></math> without using <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is strongly proper assuming every set of reals is ∞-Borel and there is no ω<sub>1</sub>-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show under ZF + DC + AD R $\sf {ZF}+ \sf {DC}+ \sf {AD}_\mathbb {R}$ that every set of reals is I-regular for any σ-ideal I on the Baire space ω ω $\omega ^{\omega }$ such that P I $\mathbb {P}_I$ is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under ZF + DC + AD + $\sf {ZF}+ \sf {DC}+ \sf {AD}^+$ if we additionally assume that the set of Borel codes for I-positive sets is Δ ˜ 1 2 $\undertilde{\mathbf {\Delta }}^2_1$ . If we do not assume DC $\sf {DC}$ , the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under ZF + DC R $\sf {ZF}+ \sf {DC}_{\mathbb {R}}$ without using DC $\sf {DC}$ that every set of reals is I-regular for any σ-ideal I on the Baire space ω ω $\omega ^{\omega }$ such that P I $\mathbb {P}_I$ is strongly proper assuming every set of reals is ∞-Borel and there is no ω1-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.

分享
查看原文
理想力的确定性和规律性
我们证明在ZF + DC + AD R $\sf {ZF}+ \sf {DC}+ \sf {AD}_\mathbb {R}$下对于任何σ-理想I在Baire空间ω ω $\omega ^{\omega }$上都是I正则的,使得p1 $\mathbb {P}_I$是正确的。这就回答了Khomskii的问题[7,问题2.6.5]。我们还证明了在ZF + DC + AD + $\sf {ZF}+ \sf {DC}+ \sf {AD}^+$下,如果我们另外假设i -正集的Borel码集为Δ ~ 1,则同样的结论成立2 . $\undertilde{\mathbf {\Delta }}^2_1$。如果我们不假设DC $\sf {DC}$,正如Asperó和Karagila[1]所指出的那样,适当性的概念变得模糊。使用类似于Bagaria和Bosch b[2]引入的强适当性概念,我们证明在ZF + DC R $\sf {ZF}+ \sf {DC}_{\mathbb {R}}$下,不使用DC $\sf {DC}$,对于任何σ-理想I在贝尔空间ω ω $\omega ^{\omega }$上,每一组实数是I正则的使得pi $\mathbb {P}_I$是强适当的假设每个实数集合都是∞-Borel并且没有ω - 1不同实数序列。特别地,同样的结论也适用于Solovay模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信