{"title":"Determinacy and regularity properties for idealized forcings","authors":"Daisuke Ikegami","doi":"10.1002/malq.202100045","DOIUrl":null,"url":null,"abstract":"<p>We show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msub>\n <mi>AD</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}_\\mathbb {R}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msup>\n <mi>AD</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}^+$</annotation>\n </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\n <semantics>\n <msubsup>\n <munder>\n <mi>Δ</mi>\n <mo>˜</mo>\n </munder>\n <mn>1</mn>\n <mn>2</mn>\n </msubsup>\n <annotation>$\\undertilde{\\mathbf {\\Delta }}^2_1$</annotation>\n </semantics></math>. If we do not assume <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <msub>\n <mi>DC</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}_{\\mathbb {R}}$</annotation>\n </semantics></math> without using <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is strongly proper assuming every set of reals is ∞-Borel and there is no ω<sub>1</sub>-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"310-317"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1
Abstract
We show under that every set of reals is I-regular for any σ-ideal I on the Baire space such that is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under if we additionally assume that the set of Borel codes for I-positive sets is . If we do not assume , the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under without using that every set of reals is I-regular for any σ-ideal I on the Baire space such that is strongly proper assuming every set of reals is ∞-Borel and there is no ω1-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.