Determinacy and regularity properties for idealized forcings

IF 0.4 4区 数学 Q4 LOGIC
Daisuke Ikegami
{"title":"Determinacy and regularity properties for idealized forcings","authors":"Daisuke Ikegami","doi":"10.1002/malq.202100045","DOIUrl":null,"url":null,"abstract":"<p>We show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msub>\n <mi>AD</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}_\\mathbb {R}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msup>\n <mi>AD</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}^+$</annotation>\n </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\n <semantics>\n <msubsup>\n <munder>\n <mi>Δ</mi>\n <mo>˜</mo>\n </munder>\n <mn>1</mn>\n <mn>2</mn>\n </msubsup>\n <annotation>$\\undertilde{\\mathbf {\\Delta }}^2_1$</annotation>\n </semantics></math>. If we do not assume <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <msub>\n <mi>DC</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}_{\\mathbb {R}}$</annotation>\n </semantics></math> without using <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is strongly proper assuming every set of reals is ∞-Borel and there is no ω<sub>1</sub>-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"310-317"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

We show under ZF + DC + AD R $\sf {ZF}+ \sf {DC}+ \sf {AD}_\mathbb {R}$ that every set of reals is I-regular for any σ-ideal I on the Baire space ω ω $\omega ^{\omega }$ such that P I $\mathbb {P}_I$ is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under ZF + DC + AD + $\sf {ZF}+ \sf {DC}+ \sf {AD}^+$ if we additionally assume that the set of Borel codes for I-positive sets is Δ ˜ 1 2 $\undertilde{\mathbf {\Delta }}^2_1$ . If we do not assume DC $\sf {DC}$ , the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under ZF + DC R $\sf {ZF}+ \sf {DC}_{\mathbb {R}}$ without using DC $\sf {DC}$ that every set of reals is I-regular for any σ-ideal I on the Baire space ω ω $\omega ^{\omega }$ such that P I $\mathbb {P}_I$ is strongly proper assuming every set of reals is ∞-Borel and there is no ω1-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.

理想力的确定性和规律性
我们证明在ZF + DC + AD R $\sf {ZF}+ \sf {DC}+ \sf {AD}_\mathbb {R}$下对于任何σ-理想I在Baire空间ω ω $\omega ^{\omega }$上都是I正则的,使得p1 $\mathbb {P}_I$是正确的。这就回答了Khomskii的问题[7,问题2.6.5]。我们还证明了在ZF + DC + AD + $\sf {ZF}+ \sf {DC}+ \sf {AD}^+$下,如果我们另外假设i -正集的Borel码集为Δ ~ 1,则同样的结论成立2 . $\undertilde{\mathbf {\Delta }}^2_1$。如果我们不假设DC $\sf {DC}$,正如Asperó和Karagila[1]所指出的那样,适当性的概念变得模糊。使用类似于Bagaria和Bosch b[2]引入的强适当性概念,我们证明在ZF + DC R $\sf {ZF}+ \sf {DC}_{\mathbb {R}}$下,不使用DC $\sf {DC}$,对于任何σ-理想I在贝尔空间ω ω $\omega ^{\omega }$上,每一组实数是I正则的使得pi $\mathbb {P}_I$是强适当的假设每个实数集合都是∞-Borel并且没有ω - 1不同实数序列。特别地,同样的结论也适用于Solovay模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信