{"title":"Bounding 2d functions by products of 1d functions","authors":"François Dorais, Dan Hathaway","doi":"10.1002/malq.202000008","DOIUrl":null,"url":null,"abstract":"<p>Given sets <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$X,Y$</annotation>\n </semantics></math> and a regular cardinal μ, let <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (X,Y,\\mu )$</annotation>\n </semantics></math> be the statement that for any function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$f : X \\times Y \\rightarrow \\mu$</annotation>\n </semantics></math>, there are functions <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_1 : X \\rightarrow \\mu$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_2 : Y \\rightarrow \\mu$</annotation>\n </semantics></math> such that for all <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$(x,y) \\in X \\times Y$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>max</mi>\n <mo>{</mo>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$f(x,y) \\le \\max \\lbrace g_1(x), g_2(y) \\rbrace$</annotation>\n </semantics></math>. In <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>, the statement <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> is false. However, we show the theory <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mtext>“the</mtext>\n <mspace></mspace>\n <mtext>club</mtext>\n <mspace></mspace>\n <mtext>filter</mtext>\n <mspace></mspace>\n <mtext>on</mtext>\n <mspace></mspace>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mspace></mspace>\n <mtext>is</mtext>\n <mspace></mspace>\n <mtext>normal”</mtext>\n <mo>+</mo>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\text{``the club filter on $\\omega _1$ is normal''} + \\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> (which is implied by <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\mathsf {DC}$</annotation>\n </semantics></math>+ “<math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>=</mo>\n <mi>L</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V = L(\\mathbb {R})$</annotation>\n </semantics></math>” + “ω<sub>1</sub> is measurable”) implies that for every <math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo><</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\alpha < \\omega _1$</annotation>\n </semantics></math> there is a <math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa \\in (\\alpha ,\\omega _1)$</annotation>\n </semantics></math> such that in some inner model, κ is measurable with Mitchell order <math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mi>α</mi>\n </mrow>\n <annotation>$\\ge \\alpha$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"202-212"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2
Abstract
Given sets and a regular cardinal μ, let be the statement that for any function , there are functions and such that for all , . In , the statement is false. However, we show the theory (which is implied by + “” + “ω1 is measurable”) implies that for every there is a such that in some inner model, κ is measurable with Mitchell order .
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.