有限单调数的罗杰斯半格

Pub Date : 2022-03-22 DOI:10.1002/malq.202100077
N. Bazhenov, M. Mustafa, Z. Tleuliyeva
{"title":"有限单调数的罗杰斯半格","authors":"N. Bazhenov, M. Mustafa, Z. Tleuliyeva","doi":"10.1002/malq.202100077","DOIUrl":null,"url":null,"abstract":"Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family S⊂P(ω)$S\\subset P(\\omega )$ is limitwise monotonic (l.m.) if every set ν(k)$\\nu (k)$ is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice Rlm(S)$R_{lm}(S)$ . The semilattices Rlm(S)$R_{lm}(S)$ exhibit a peculiar behavior, which puts them in‐between the classical Rogers semilattices (for computable families) and Rogers semilattices of Σ20$\\Sigma ^0_2$ ‐computable families. We show that every Rogers semilattice of a Σ20$\\Sigma ^0_2$ ‐computable family is isomorphic to some semilattice Rlm(S)$R_{lm}(S)$ . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices Rlm(S)$R_{lm}(S)$ . In particular, there is an l.m. family S such that Rlm(S)$R_{lm}(S)$ is isomorphic to the upper semilattice of c.e. m‐degrees. We prove that if an l.m. family S contains more than one element, then the poset Rlm(S)$R_{lm}(S)$ is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all Σ20$\\Sigma ^0_2$ ‐computable numberings. We prove that inside this class, the index set of l.m. numberings is Σ40$\\Sigma ^0_4$ ‐complete.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogers semilattices of limitwise monotonic numberings\",\"authors\":\"N. Bazhenov, M. Mustafa, Z. Tleuliyeva\",\"doi\":\"10.1002/malq.202100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family S⊂P(ω)$S\\\\subset P(\\\\omega )$ is limitwise monotonic (l.m.) if every set ν(k)$\\\\nu (k)$ is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice Rlm(S)$R_{lm}(S)$ . The semilattices Rlm(S)$R_{lm}(S)$ exhibit a peculiar behavior, which puts them in‐between the classical Rogers semilattices (for computable families) and Rogers semilattices of Σ20$\\\\Sigma ^0_2$ ‐computable families. We show that every Rogers semilattice of a Σ20$\\\\Sigma ^0_2$ ‐computable family is isomorphic to some semilattice Rlm(S)$R_{lm}(S)$ . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices Rlm(S)$R_{lm}(S)$ . In particular, there is an l.m. family S such that Rlm(S)$R_{lm}(S)$ is isomorphic to the upper semilattice of c.e. m‐degrees. We prove that if an l.m. family S contains more than one element, then the poset Rlm(S)$R_{lm}(S)$ is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all Σ20$\\\\Sigma ^0_2$ ‐computable numberings. We prove that inside this class, the index set of l.m. numberings is Σ40$\\\\Sigma ^0_4$ ‐complete.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/malq.202100077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/malq.202100077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有限单调集和函数是可计算结构理论中的一个重要工具。我们研究了有限单调数。一族S∧P(ω) $S\subset P(\omega )$的编号ν是有限单调的(l.m.),如果每个集合ν(k) $\nu (k)$是一个有限单调函数的值域,一致地在k中。S的所有l.m.编号的集合归纳出罗杰斯半格Rlm(S) $R_{lm}(S)$。半格Rlm(S) $R_{lm}(S)$表现出一种特殊的行为,使它们介于经典Rogers半格(可计算族)和Σ20 $\Sigma ^0_2$可计算族的Rogers半格之间。我们证明了Σ20 $\Sigma ^0_2$‐可计算族的每一个Rogers半格都与某个半格rm (S) $R_{lm}(S)$同构。另一方面,经典罗杰斯半格存在无穷多个同构类型,它们可以被实现为半格Rlm(S) $R_{lm}(S)$。特别地,存在一个l.m.s族S,使得Rlm(S) $R_{lm}(S)$同构于c.e.m°的上半格。证明了如果一个l族S包含多于一个元素,则偏置集Rlm(S) $R_{lm}(S)$是无限的,并且它不是格。在所有Σ20 $\Sigma ^0_2$‐可计算编号的类中,l.m.编号形成了一个理想(编号之间的w.r.t.可约性)。证明了在这个类中,l.m.编号的索引集是Σ40 $\Sigma ^0_4$‐完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rogers semilattices of limitwise monotonic numberings
Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family S⊂P(ω)$S\subset P(\omega )$ is limitwise monotonic (l.m.) if every set ν(k)$\nu (k)$ is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice Rlm(S)$R_{lm}(S)$ . The semilattices Rlm(S)$R_{lm}(S)$ exhibit a peculiar behavior, which puts them in‐between the classical Rogers semilattices (for computable families) and Rogers semilattices of Σ20$\Sigma ^0_2$ ‐computable families. We show that every Rogers semilattice of a Σ20$\Sigma ^0_2$ ‐computable family is isomorphic to some semilattice Rlm(S)$R_{lm}(S)$ . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices Rlm(S)$R_{lm}(S)$ . In particular, there is an l.m. family S such that Rlm(S)$R_{lm}(S)$ is isomorphic to the upper semilattice of c.e. m‐degrees. We prove that if an l.m. family S contains more than one element, then the poset Rlm(S)$R_{lm}(S)$ is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all Σ20$\Sigma ^0_2$ ‐computable numberings. We prove that inside this class, the index set of l.m. numberings is Σ40$\Sigma ^0_4$ ‐complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信