二维函数的边界是一维函数的乘积

IF 0.4 4区 数学 Q4 LOGIC
François Dorais, Dan Hathaway
{"title":"二维函数的边界是一维函数的乘积","authors":"François Dorais,&nbsp;Dan Hathaway","doi":"10.1002/malq.202000008","DOIUrl":null,"url":null,"abstract":"<p>Given sets <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$X,Y$</annotation>\n </semantics></math> and a regular cardinal μ, let <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (X,Y,\\mu )$</annotation>\n </semantics></math> be the statement that for any function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$f : X \\times Y \\rightarrow \\mu$</annotation>\n </semantics></math>, there are functions <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_1 : X \\rightarrow \\mu$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_2 : Y \\rightarrow \\mu$</annotation>\n </semantics></math> such that for all <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$(x,y) \\in X \\times Y$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>max</mi>\n <mo>{</mo>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$f(x,y) \\le \\max \\lbrace g_1(x), g_2(y) \\rbrace$</annotation>\n </semantics></math>. In <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>, the statement <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> is false. However, we show the theory <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mtext>“the</mtext>\n <mspace></mspace>\n <mtext>club</mtext>\n <mspace></mspace>\n <mtext>filter</mtext>\n <mspace></mspace>\n <mtext>on</mtext>\n <mspace></mspace>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mspace></mspace>\n <mtext>is</mtext>\n <mspace></mspace>\n <mtext>normal”</mtext>\n <mo>+</mo>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\text{``the club filter on $\\omega _1$ is normal''} + \\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> (which is implied by <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\mathsf {DC}$</annotation>\n </semantics></math>+ “<math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>=</mo>\n <mi>L</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V = L(\\mathbb {R})$</annotation>\n </semantics></math>” + “ω<sub>1</sub> is measurable”) implies that for every <math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\alpha &lt; \\omega _1$</annotation>\n </semantics></math> there is a <math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa \\in (\\alpha ,\\omega _1)$</annotation>\n </semantics></math> such that in some inner model, κ is measurable with Mitchell order <math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mi>α</mi>\n </mrow>\n <annotation>$\\ge \\alpha$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"202-212"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bounding 2d functions by products of 1d functions\",\"authors\":\"François Dorais,&nbsp;Dan Hathaway\",\"doi\":\"10.1002/malq.202000008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given sets <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$X,Y$</annotation>\\n </semantics></math> and a regular cardinal μ, let <math>\\n <semantics>\\n <mrow>\\n <mi>Φ</mi>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Y</mi>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Phi (X,Y,\\\\mu )$</annotation>\\n </semantics></math> be the statement that for any function <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>X</mi>\\n <mo>×</mo>\\n <mi>Y</mi>\\n <mo>→</mo>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$f : X \\\\times Y \\\\rightarrow \\\\mu$</annotation>\\n </semantics></math>, there are functions <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <mi>X</mi>\\n <mo>→</mo>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$g_1 : X \\\\rightarrow \\\\mu$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>g</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>:</mo>\\n <mi>Y</mi>\\n <mo>→</mo>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$g_2 : Y \\\\rightarrow \\\\mu$</annotation>\\n </semantics></math> such that for all <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mi>X</mi>\\n <mo>×</mo>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$(x,y) \\\\in X \\\\times Y$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>max</mi>\\n <mo>{</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <msub>\\n <mi>g</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$f(x,y) \\\\le \\\\max \\\\lbrace g_1(x), g_2(y) \\\\rbrace$</annotation>\\n </semantics></math>. In <math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math>, the statement <math>\\n <semantics>\\n <mrow>\\n <mi>Φ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\Phi (\\\\omega _1, \\\\omega _1, \\\\omega )$</annotation>\\n </semantics></math> is false. However, we show the theory <math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mo>+</mo>\\n <mtext>“the</mtext>\\n <mspace></mspace>\\n <mtext>club</mtext>\\n <mspace></mspace>\\n <mtext>filter</mtext>\\n <mspace></mspace>\\n <mtext>on</mtext>\\n <mspace></mspace>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mspace></mspace>\\n <mtext>is</mtext>\\n <mspace></mspace>\\n <mtext>normal”</mtext>\\n <mo>+</mo>\\n <mi>Φ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathsf {ZF}+ \\\\text{``the club filter on $\\\\omega _1$ is normal''} + \\\\Phi (\\\\omega _1, \\\\omega _1, \\\\omega )$</annotation>\\n </semantics></math> (which is implied by <math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mo>+</mo>\\n <mi>DC</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZF}+ \\\\mathsf {DC}$</annotation>\\n </semantics></math>+ “<math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>=</mo>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$V = L(\\\\mathbb {R})$</annotation>\\n </semantics></math>” + “ω<sub>1</sub> is measurable”) implies that for every <math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\alpha &lt; \\\\omega _1$</annotation>\\n </semantics></math> there is a <math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\kappa \\\\in (\\\\alpha ,\\\\omega _1)$</annotation>\\n </semantics></math> such that in some inner model, κ is measurable with Mitchell order <math>\\n <semantics>\\n <mrow>\\n <mo>≥</mo>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$\\\\ge \\\\alpha$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 2\",\"pages\":\"202-212\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

摘要

给定集合X, Y $X,Y$和正则基数μ,令Φ (X, Y,μ) $\Phi (X,Y,\mu )$对于任意函数f:X × Y→μ $f : X \times Y \rightarrow \mu$,有函数g1:X→μ $g_1 : X \rightarrow \mu$和g2:Y→μ $g_2 : Y \rightarrow \mu$使得对于所有(x, Y)∈x × Y $(x,y) \in X \times Y$,F (x, y)≤{Max g1 (x),g2 (y)}$f(x,y) \le \max \lbrace g_1(x), g_2(y) \rbrace$。在ZFC $\mathsf {ZFC}$中,语句Φ (ω 1, ω 1, ω) $\Phi (\omega _1, \omega _1, \omega )$为假。然而,我们展示了理论ZF +“ω 1上的俱乐部滤波器是正常的”+ Φ (ω 1 ω 1,ω) $\mathsf {ZF}+ \text{``the club filter on $\omega _1 $ is normal''} + \Phi (\omega _1, \omega _1, \omega )$(由ZF + DC $\mathsf {ZF}+ \mathsf {DC}$ +“V = L (R) $V = L(\mathbb {R})$隐含“+”ω1是可测量的”)意味着对于每一个α &lt;ω 1 $\alpha < \omega _1$存在一个κ∈(α, ω 1) $\kappa \in (\alpha ,\omega _1)$,使得在某个内部模型中,κ可测,Mitchell阶≥α $\ge \alpha$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding 2d functions by products of 1d functions

Given sets X , Y $X,Y$ and a regular cardinal μ, let Φ ( X , Y , μ ) $\Phi (X,Y,\mu )$ be the statement that for any function f : X × Y μ $f : X \times Y \rightarrow \mu$ , there are functions g 1 : X μ $g_1 : X \rightarrow \mu$ and g 2 : Y μ $g_2 : Y \rightarrow \mu$ such that for all ( x , y ) X × Y $(x,y) \in X \times Y$ , f ( x , y ) max { g 1 ( x ) , g 2 ( y ) } $f(x,y) \le \max \lbrace g_1(x), g_2(y) \rbrace$ . In ZFC $\mathsf {ZFC}$ , the statement Φ ( ω 1 , ω 1 , ω ) $\Phi (\omega _1, \omega _1, \omega )$ is false. However, we show the theory ZF + “the club filter on ω 1 is normal” + Φ ( ω 1 , ω 1 , ω ) $\mathsf {ZF}+ \text{``the club filter on $\omega _1$ is normal''} + \Phi (\omega _1, \omega _1, \omega )$ (which is implied by ZF + DC $\mathsf {ZF}+ \mathsf {DC}$ + “ V = L ( R ) $V = L(\mathbb {R})$ ” + “ω1 is measurable”) implies that for every α < ω 1 $\alpha < \omega _1$ there is a κ ( α , ω 1 ) $\kappa \in (\alpha ,\omega _1)$ such that in some inner model, κ is measurable with Mitchell order α $\ge \alpha$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信