Th (N,·)$ \operatorname{Th}(\mathbb {N},\cdot)$

IF 0.4 4区 数学 Q4 LOGIC
Atticus Stonestrom
{"title":"Th (N,·)$ \\operatorname{Th}(\\mathbb {N},\\cdot)$","authors":"Atticus Stonestrom","doi":"10.1002/malq.202100049","DOIUrl":null,"url":null,"abstract":"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathbb {N},\\cdot )$</annotation>\n </semantics></math>. We give a full characterization of the <math>\n <semantics>\n <mi>⌀</mi>\n <annotation>$\\varnothing$</annotation>\n </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"288-303"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049","citationCount":"1","resultStr":"{\"title\":\"Some model theory of \\n \\n \\n Th\\n (\\n N\\n ,\\n ·\\n )\\n \\n $\\\\operatorname{Th}(\\\\mathbb {N},\\\\cdot )$\",\"authors\":\"Atticus Stonestrom\",\"doi\":\"10.1002/malq.202100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathbb {N},\\\\cdot )$</annotation>\\n </semantics></math>. We give a full characterization of the <math>\\n <semantics>\\n <mi>⌀</mi>\\n <annotation>$\\\\varnothing$</annotation>\\n </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"288-303\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100049\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

“Skolem算术”是乘法单群(N,·)$ (\mathbb {N},\cdot)$的完备理论T。给出了T的 \ \var \ \可定义稳定嵌入集的完整刻划,特别证明了在具有相同可定义闭包的关系之前,只有一个非平凡的闭包:无平方元的集合。然后我们证明了T有弱消虚数,但没有消有限虚数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some model theory of Th ( N , · ) $\operatorname{Th}(\mathbb {N},\cdot )$

‘Skolem arithmetic’ is the complete theory T of the multiplicative monoid ( N , · ) $(\mathbb {N},\cdot )$ . We give a full characterization of the $\varnothing$ -definable stably embedded sets of T, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that T has weak elimination of imaginaries but not elimination of finite imaginaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信