Th (N,·)$ \operatorname{Th}(\mathbb {N},\cdot)$

Pub Date : 2022-04-28 DOI:10.1002/malq.202100049
Atticus Stonestrom
{"title":"Th (N,·)$ \\operatorname{Th}(\\mathbb {N},\\cdot)$","authors":"Atticus Stonestrom","doi":"10.1002/malq.202100049","DOIUrl":null,"url":null,"abstract":"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathbb {N},\\cdot )$</annotation>\n </semantics></math>. We give a full characterization of the <math>\n <semantics>\n <mi>⌀</mi>\n <annotation>$\\varnothing$</annotation>\n </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049","citationCount":"1","resultStr":"{\"title\":\"Some model theory of \\n \\n \\n Th\\n (\\n N\\n ,\\n ·\\n )\\n \\n $\\\\operatorname{Th}(\\\\mathbb {N},\\\\cdot )$\",\"authors\":\"Atticus Stonestrom\",\"doi\":\"10.1002/malq.202100049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathbb {N},\\\\cdot )$</annotation>\\n </semantics></math>. We give a full characterization of the <math>\\n <semantics>\\n <mi>⌀</mi>\\n <annotation>$\\\\varnothing$</annotation>\\n </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

“Skolem算术”是乘法单群(N,·)$ (\mathbb {N},\cdot)$的完备理论T。给出了T的 \ \var \ \可定义稳定嵌入集的完整刻划,特别证明了在具有相同可定义闭包的关系之前,只有一个非平凡的闭包:无平方元的集合。然后我们证明了T有弱消虚数,但没有消有限虚数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some model theory of Th ( N , · ) $\operatorname{Th}(\mathbb {N},\cdot )$

‘Skolem arithmetic’ is the complete theory T of the multiplicative monoid ( N , · ) $(\mathbb {N},\cdot )$ . We give a full characterization of the $\varnothing$ -definable stably embedded sets of T, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that T has weak elimination of imaginaries but not elimination of finite imaginaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信