The theory of hereditarily bounded sets

Pub Date : 2022-04-03 DOI:10.1002/malq.202100020
Emil Jeřábek
{"title":"The theory of hereditarily bounded sets","authors":"Emil Jeřábek","doi":"10.1002/malq.202100020","DOIUrl":null,"url":null,"abstract":"<p>We show that for any <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$k\\in \\omega$</annotation>\n </semantics></math>, the structure <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n <mo>,</mo>\n <mo>∈</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle H_k,{\\in }\\rangle$</annotation>\n </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>ω</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>⋃</mo>\n <mi>k</mi>\n </msub>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$V_\\omega =\\bigcup _kH_k$</annotation>\n </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mo>,</mo>\n <mo>·</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathbb {N},+,\\cdot \\rangle$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that for any k ω $k\in \omega$ , the structure H k , $\langle H_k,{\in }\rangle$ of sets that are hereditarily of size at most k is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure V ω = k H k $V_\omega =\bigcup _kH_k$ of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic N , + , · $\langle \mathbb {N},+,\cdot \rangle$ .

分享
查看原文
遗传有界集理论
我们证明对于任何k∈ω $k\in \omega$,遗传上大小最多为k的集合的结构⟨H k,∈⟩$\langle H_k,{\in }\rangle$是可决定的。我们提供了它的理论的一个透明的完全公理化,一个量词消除结果,以及它的计算复杂性的严格界限。这与遗传有限集的结构V ω = k H k $V_\omega =\bigcup _kH_k$形成鲜明对比,这是众所周知的,用算术⟨N, +,·⟩$\langle \mathbb {N},+,\cdot \rangle$的标准模型是双可解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信