Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva
{"title":"有限单调数的罗杰斯半格","authors":"Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva","doi":"10.1002/malq.202100077","DOIUrl":null,"url":null,"abstract":"<p>Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊂</mo>\n <mi>P</mi>\n <mo>(</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$S\\subset P(\\omega )$</annotation>\n </semantics></math> is limitwise monotonic (l.m.) if every set <math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\nu (k)$</annotation>\n </semantics></math> is the range of a limitwise monotonic function, uniformly in <i>k</i>. The set of all l.m. numberings of <i>S</i> induces the Rogers semilattice <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. The semilattices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> exhibit a peculiar behavior, which puts them <i>in-between</i> the classical Rogers semilattices (for computable families) and Rogers semilattices of <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable families. We show that every Rogers semilattice of a <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable family is isomorphic to some semilattice <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. In particular, there is an l.m. family <i>S</i> such that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> is isomorphic to the upper semilattice of c.e. <i>m</i>-degrees. We prove that if an l.m. family <i>S</i> contains more than one element, then the poset <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable numberings. We prove that inside this class, the index set of l.m. numberings is <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>4</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_4$</annotation>\n </semantics></math>-complete.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogers semilattices of limitwise monotonic numberings\",\"authors\":\"Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva\",\"doi\":\"10.1002/malq.202100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>⊂</mo>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$S\\\\subset P(\\\\omega )$</annotation>\\n </semantics></math> is limitwise monotonic (l.m.) if every set <math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\nu (k)$</annotation>\\n </semantics></math> is the range of a limitwise monotonic function, uniformly in <i>k</i>. The set of all l.m. numberings of <i>S</i> induces the Rogers semilattice <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. The semilattices <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> exhibit a peculiar behavior, which puts them <i>in-between</i> the classical Rogers semilattices (for computable families) and Rogers semilattices of <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable families. We show that every Rogers semilattice of a <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable family is isomorphic to some semilattice <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. In particular, there is an l.m. family <i>S</i> such that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> is isomorphic to the upper semilattice of c.e. <i>m</i>-degrees. We prove that if an l.m. family <i>S</i> contains more than one element, then the poset <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable numberings. We prove that inside this class, the index set of l.m. numberings is <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>4</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_4$</annotation>\\n </semantics></math>-complete.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
有限单调集和函数是可计算结构理论中的一个重要工具。我们研究了有限单调数。一族S∧P (ω) $S\subset P(\omega )$中的编号ν是有限单调的(l.m.),如果每个集合ν (k) $\nu (k)$都是一个有限单调函数的值域,S的所有l.m.编号的集合归纳出罗杰斯半格R l m (S) $R_{lm}(S)$。半晶格R l m (S) $R_{lm}(S)$表现出一种特殊的行为,这使它们处于经典的罗杰斯半格(可计算族)和Σ 2 $\Sigma ^0_2$ -可计算族的罗杰斯半格之间。我们证明了Σ 2 $\Sigma ^0_2$可计算族的每一个Rogers半格都与某个半格rl m (S)同构。$R_{lm}(S)$。另一方面,经典罗杰斯半格存在无穷多个同构类型,它们可以被实现为半格R l m (S) $R_{lm}(S)$。特别地,存在一个l m族S,使得R l m (S) $R_{lm}(S)$与c.e. m度的上半格同构。我们证明了如果一个l.m.族S包含多于一个元素,那么偏置集R l m (S) $R_{lm}(S)$是无限的,并且它不是一个格。在所有Σ 2 $\Sigma ^0_2$ -可计算编号的类中,l.m.编号形成了一个理想(编号之间的w.r.t.可约性)。我们证明了在这个类中,l.m.编号的索引集是Σ 4 0 $\Sigma ^0_4$ -完全的。
Rogers semilattices of limitwise monotonic numberings
Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family is limitwise monotonic (l.m.) if every set is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice . The semilattices exhibit a peculiar behavior, which puts them in-between the classical Rogers semilattices (for computable families) and Rogers semilattices of -computable families. We show that every Rogers semilattice of a -computable family is isomorphic to some semilattice . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices . In particular, there is an l.m. family S such that is isomorphic to the upper semilattice of c.e. m-degrees. We prove that if an l.m. family S contains more than one element, then the poset is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all -computable numberings. We prove that inside this class, the index set of l.m. numberings is -complete.