Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva
{"title":"有限单调数的罗杰斯半格","authors":"Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva","doi":"10.1002/malq.202100077","DOIUrl":null,"url":null,"abstract":"<p>Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊂</mo>\n <mi>P</mi>\n <mo>(</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$S\\subset P(\\omega )$</annotation>\n </semantics></math> is limitwise monotonic (l.m.) if every set <math>\n <semantics>\n <mrow>\n <mi>ν</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\nu (k)$</annotation>\n </semantics></math> is the range of a limitwise monotonic function, uniformly in <i>k</i>. The set of all l.m. numberings of <i>S</i> induces the Rogers semilattice <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. The semilattices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> exhibit a peculiar behavior, which puts them <i>in-between</i> the classical Rogers semilattices (for computable families) and Rogers semilattices of <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable families. We show that every Rogers semilattice of a <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable family is isomorphic to some semilattice <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math>. In particular, there is an l.m. family <i>S</i> such that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> is isomorphic to the upper semilattice of c.e. <i>m</i>-degrees. We prove that if an l.m. family <i>S</i> contains more than one element, then the poset <math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <mi>l</mi>\n <mi>m</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$R_{lm}(S)$</annotation>\n </semantics></math> is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>2</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_2$</annotation>\n </semantics></math>-computable numberings. We prove that inside this class, the index set of l.m. numberings is <math>\n <semantics>\n <msubsup>\n <mi>Σ</mi>\n <mn>4</mn>\n <mn>0</mn>\n </msubsup>\n <annotation>$\\Sigma ^0_4$</annotation>\n </semantics></math>-complete.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"213-226"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogers semilattices of limitwise monotonic numberings\",\"authors\":\"Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva\",\"doi\":\"10.1002/malq.202100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>⊂</mo>\\n <mi>P</mi>\\n <mo>(</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$S\\\\subset P(\\\\omega )$</annotation>\\n </semantics></math> is limitwise monotonic (l.m.) if every set <math>\\n <semantics>\\n <mrow>\\n <mi>ν</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\nu (k)$</annotation>\\n </semantics></math> is the range of a limitwise monotonic function, uniformly in <i>k</i>. The set of all l.m. numberings of <i>S</i> induces the Rogers semilattice <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. The semilattices <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> exhibit a peculiar behavior, which puts them <i>in-between</i> the classical Rogers semilattices (for computable families) and Rogers semilattices of <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable families. We show that every Rogers semilattice of a <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable family is isomorphic to some semilattice <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math>. In particular, there is an l.m. family <i>S</i> such that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> is isomorphic to the upper semilattice of c.e. <i>m</i>-degrees. We prove that if an l.m. family <i>S</i> contains more than one element, then the poset <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mi>l</mi>\\n <mi>m</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$R_{lm}(S)$</annotation>\\n </semantics></math> is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>2</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_2$</annotation>\\n </semantics></math>-computable numberings. We prove that inside this class, the index set of l.m. numberings is <math>\\n <semantics>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>4</mn>\\n <mn>0</mn>\\n </msubsup>\\n <annotation>$\\\\Sigma ^0_4$</annotation>\\n </semantics></math>-complete.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 2\",\"pages\":\"213-226\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
摘要
有限单调集和函数是可计算结构理论中的一个重要工具。我们研究了有限单调数。一族S∧P (ω) $S\subset P(\omega )$中的编号ν是有限单调的(l.m.),如果每个集合ν (k) $\nu (k)$都是一个有限单调函数的值域,S的所有l.m.编号的集合归纳出罗杰斯半格R l m (S) $R_{lm}(S)$。半晶格R l m (S) $R_{lm}(S)$表现出一种特殊的行为,这使它们处于经典的罗杰斯半格(可计算族)和Σ 2 $\Sigma ^0_2$ -可计算族的罗杰斯半格之间。我们证明了Σ 2 $\Sigma ^0_2$可计算族的每一个Rogers半格都与某个半格rl m (S)同构。$R_{lm}(S)$。另一方面,经典罗杰斯半格存在无穷多个同构类型,它们可以被实现为半格R l m (S) $R_{lm}(S)$。特别地,存在一个l m族S,使得R l m (S) $R_{lm}(S)$与c.e. m度的上半格同构。我们证明了如果一个l.m.族S包含多于一个元素,那么偏置集R l m (S) $R_{lm}(S)$是无限的,并且它不是一个格。在所有Σ 2 $\Sigma ^0_2$ -可计算编号的类中,l.m.编号形成了一个理想(编号之间的w.r.t.可约性)。我们证明了在这个类中,l.m.编号的索引集是Σ 4 0 $\Sigma ^0_4$ -完全的。
Rogers semilattices of limitwise monotonic numberings
Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family is limitwise monotonic (l.m.) if every set is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice . The semilattices exhibit a peculiar behavior, which puts them in-between the classical Rogers semilattices (for computable families) and Rogers semilattices of -computable families. We show that every Rogers semilattice of a -computable family is isomorphic to some semilattice . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices . In particular, there is an l.m. family S such that is isomorphic to the upper semilattice of c.e. m-degrees. We prove that if an l.m. family S contains more than one element, then the poset is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all -computable numberings. We prove that inside this class, the index set of l.m. numberings is -complete.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.