遗传有界集理论

IF 0.4 4区 数学 Q4 LOGIC
Emil Jeřábek
{"title":"遗传有界集理论","authors":"Emil Jeřábek","doi":"10.1002/malq.202100020","DOIUrl":null,"url":null,"abstract":"<p>We show that for any <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$k\\in \\omega$</annotation>\n </semantics></math>, the structure <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n <mo>,</mo>\n <mo>∈</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle H_k,{\\in }\\rangle$</annotation>\n </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>ω</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>⋃</mo>\n <mi>k</mi>\n </msub>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$V_\\omega =\\bigcup _kH_k$</annotation>\n </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mo>,</mo>\n <mo>·</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathbb {N},+,\\cdot \\rangle$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"243-256"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The theory of hereditarily bounded sets\",\"authors\":\"Emil Jeřábek\",\"doi\":\"10.1002/malq.202100020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for any <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$k\\\\in \\\\omega$</annotation>\\n </semantics></math>, the structure <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>,</mo>\\n <mo>∈</mo>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle H_k,{\\\\in }\\\\rangle$</annotation>\\n </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mi>ω</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>⋃</mo>\\n <mi>k</mi>\\n </msub>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$V_\\\\omega =\\\\bigcup _kH_k$</annotation>\\n </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mo>,</mo>\\n <mo>·</mo>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathbb {N},+,\\\\cdot \\\\rangle$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 2\",\"pages\":\"243-256\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

我们证明对于任何k∈ω $k\in \omega$,遗传上大小最多为k的集合的结构⟨H k,∈⟩$\langle H_k,{\in }\rangle$是可决定的。我们提供了它的理论的一个透明的完全公理化,一个量词消除结果,以及它的计算复杂性的严格界限。这与遗传有限集的结构V ω = k H k $V_\omega =\bigcup _kH_k$形成鲜明对比,这是众所周知的,用算术⟨N, +,·⟩$\langle \mathbb {N},+,\cdot \rangle$的标准模型是双可解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The theory of hereditarily bounded sets

We show that for any k ω $k\in \omega$ , the structure H k , $\langle H_k,{\in }\rangle$ of sets that are hereditarily of size at most k is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure V ω = k H k $V_\omega =\bigcup _kH_k$ of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic N , + , · $\langle \mathbb {N},+,\cdot \rangle$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信