{"title":"遗传有界集理论","authors":"Emil Jeřábek","doi":"10.1002/malq.202100020","DOIUrl":null,"url":null,"abstract":"<p>We show that for any <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$k\\in \\omega$</annotation>\n </semantics></math>, the structure <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n <mo>,</mo>\n <mo>∈</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle H_k,{\\in }\\rangle$</annotation>\n </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>ω</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>⋃</mo>\n <mi>k</mi>\n </msub>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$V_\\omega =\\bigcup _kH_k$</annotation>\n </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\n <semantics>\n <mrow>\n <mo>⟨</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mo>,</mo>\n <mo>·</mo>\n <mo>⟩</mo>\n </mrow>\n <annotation>$\\langle \\mathbb {N},+,\\cdot \\rangle$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The theory of hereditarily bounded sets\",\"authors\":\"Emil Jeřábek\",\"doi\":\"10.1002/malq.202100020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for any <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$k\\\\in \\\\omega$</annotation>\\n </semantics></math>, the structure <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>,</mo>\\n <mo>∈</mo>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle H_k,{\\\\in }\\\\rangle$</annotation>\\n </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mi>ω</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>⋃</mo>\\n <mi>k</mi>\\n </msub>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$V_\\\\omega =\\\\bigcup _kH_k$</annotation>\\n </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\\n <semantics>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mo>,</mo>\\n <mo>·</mo>\\n <mo>⟩</mo>\\n </mrow>\\n <annotation>$\\\\langle \\\\mathbb {N},+,\\\\cdot \\\\rangle$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们证明对于任何k∈ω $k\in \omega$,遗传上大小最多为k的集合的结构⟨H k,∈⟩$\langle H_k,{\in }\rangle$是可决定的。我们提供了它的理论的一个透明的完全公理化,一个量词消除结果,以及它的计算复杂性的严格界限。这与遗传有限集的结构V ω = k H k $V_\omega =\bigcup _kH_k$形成鲜明对比,这是众所周知的,用算术⟨N, +,·⟩$\langle \mathbb {N},+,\cdot \rangle$的标准模型是双可解释的。
We show that for any , the structure of sets that are hereditarily of size at most k is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic .