Gap-2泥沼可定义η - 1排序

IF 0.4 4区 数学 Q4 LOGIC
Bob A. Dumas
{"title":"Gap-2泥沼可定义η - 1排序","authors":"Bob A. Dumas","doi":"10.1002/malq.201800002","DOIUrl":null,"url":null,"abstract":"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\n <semantics>\n <mrow>\n <mi>ZFC</mi>\n <mo>+</mo>\n <mi>CH</mi>\n </mrow>\n <annotation>$\\mathsf {ZFC}+\\mathsf {CH}$</annotation>\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$2^{\\aleph _0}=\\aleph _3$</annotation>\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"227-242"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap-2 morass-definable η1-orderings\",\"authors\":\"Bob A. Dumas\",\"doi\":\"10.1002/malq.201800002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\\n <semantics>\\n <mrow>\\n <mi>ZFC</mi>\\n <mo>+</mo>\\n <mi>CH</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZFC}+\\\\mathsf {CH}$</annotation>\\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n </msup>\\n <mo>=</mo>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$2^{\\\\aleph _0}=\\\\aleph _3$</annotation>\\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 2\",\"pages\":\"227-242\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在Cohen扩展中,我们证明了在包含一个简化的(ω 1,2)-morass的ZFC + CH $\mathsf {ZFC}+\mathsf {CH}$的模型中添加了λ 3的一般实数是序同构的。因此,2 ~ 0 = ~ 3$ 2^{\aleph _0}=\aleph _3$,连续统的基数上的沼泽可定义η - 1序是序同构的。我们证明了R $\mathbb {R}$ / ω的超幂是gap-2沼泽可定义的。该构造使用简化的间隙-2泥沼,以及泥沼映射和泥沼嵌入的交换性,将阶型ω1的超限来回构造扩展到基数为ω 3的对象之间的保序双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gap-2 morass-definable η1-orderings

We prove that in the Cohen extension adding ℵ3 generic reals to a model of ZFC + CH $\mathsf {ZFC}+\mathsf {CH}$ containing a simplified (ω1, 2)-morass, gap-2 morass-definable η1-orderings with cardinality ℵ3 are order-isomorphic. Hence it is consistent that 2 0 = 3 $2^{\aleph _0}=\aleph _3$ and that morass-definable η1-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of R $\mathbb {R}$ over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω1 to an order-preserving bijection between objects of cardinality ℵ3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信