{"title":"Gap-2泥沼可定义η - 1排序","authors":"Bob A. Dumas","doi":"10.1002/malq.201800002","DOIUrl":null,"url":null,"abstract":"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\n <semantics>\n <mrow>\n <mi>ZFC</mi>\n <mo>+</mo>\n <mi>CH</mi>\n </mrow>\n <annotation>$\\mathsf {ZFC}+\\mathsf {CH}$</annotation>\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$2^{\\aleph _0}=\\aleph _3$</annotation>\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap-2 morass-definable η1-orderings\",\"authors\":\"Bob A. Dumas\",\"doi\":\"10.1002/malq.201800002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\\n <semantics>\\n <mrow>\\n <mi>ZFC</mi>\\n <mo>+</mo>\\n <mi>CH</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZFC}+\\\\mathsf {CH}$</annotation>\\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n </msup>\\n <mo>=</mo>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$2^{\\\\aleph _0}=\\\\aleph _3$</annotation>\\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that in the Cohen extension adding ℵ3 generic reals to a model of containing a simplified (ω1, 2)-morass, gap-2 morass-definable η1-orderings with cardinality ℵ3 are order-isomorphic. Hence it is consistent that and that morass-definable η1-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω1 to an order-preserving bijection between objects of cardinality ℵ3.