{"title":"Gap-2泥沼可定义η - 1排序","authors":"Bob A. Dumas","doi":"10.1002/malq.201800002","DOIUrl":null,"url":null,"abstract":"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\n <semantics>\n <mrow>\n <mi>ZFC</mi>\n <mo>+</mo>\n <mi>CH</mi>\n </mrow>\n <annotation>$\\mathsf {ZFC}+\\mathsf {CH}$</annotation>\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$2^{\\aleph _0}=\\aleph _3$</annotation>\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 2","pages":"227-242"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap-2 morass-definable η1-orderings\",\"authors\":\"Bob A. Dumas\",\"doi\":\"10.1002/malq.201800002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\\n <semantics>\\n <mrow>\\n <mi>ZFC</mi>\\n <mo>+</mo>\\n <mi>CH</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZFC}+\\\\mathsf {CH}$</annotation>\\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n </msup>\\n <mo>=</mo>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$2^{\\\\aleph _0}=\\\\aleph _3$</annotation>\\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 2\",\"pages\":\"227-242\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
We prove that in the Cohen extension adding ℵ3 generic reals to a model of containing a simplified (ω1, 2)-morass, gap-2 morass-definable η1-orderings with cardinality ℵ3 are order-isomorphic. Hence it is consistent that and that morass-definable η1-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω1 to an order-preserving bijection between objects of cardinality ℵ3.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.