Mathematical Logic Quarterly最新文献

筛选
英文 中文
Refining the arithmetical hierarchy of classical principles 改进经典原理的算术层次
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-06-09 DOI: 10.1002/malq.202000077
Makoto Fujiwara, Taishi Kurahashi
{"title":"Refining the arithmetical hierarchy of classical principles","authors":"Makoto Fujiwara,&nbsp;Taishi Kurahashi","doi":"10.1002/malq.202000077","DOIUrl":"10.1002/malq.202000077","url":null,"abstract":"<p>We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, De Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90720467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Choice principles in local mantles 当地的选择原则
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-05-07 DOI: 10.1002/malq.202000089
Farmer Schlutzenberg
{"title":"Choice principles in local mantles","authors":"Farmer Schlutzenberg","doi":"10.1002/malq.202000089","DOIUrl":"10.1002/malq.202000089","url":null,"abstract":"<p>Assume <math>\u0000 <semantics>\u0000 <mi>ZFC</mi>\u0000 <annotation>$mathsf {ZFC}$</annotation>\u0000 </semantics></math>. Let κ be a cardinal. A <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>&lt;</mo>\u0000 <mspace></mspace>\u0000 <mi>κ</mi>\u0000 </mrow>\u0000 <annotation>${mathord {&lt;}hspace{1.111pt}kappa }$</annotation>\u0000 </semantics></math><i>-ground</i>\u0000is a transitive proper class <i>W</i> modelling <math>\u0000 <semantics>\u0000 <mi>ZFC</mi>\u0000 <annotation>$mathsf {ZFC}$</annotation>\u0000 </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 <mo>∈</mo>\u0000 <mi>W</mi>\u0000 </mrow>\u0000 <annotation>$mathbb {P}in W$</annotation>\u0000 </semantics></math> of cardinality <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>&lt;</mo>\u0000 <mspace></mspace>\u0000 <mi>κ</mi>\u0000 </mrow>\u0000 <annotation>${mathord {&lt;}hspace{1.111pt}kappa }$</annotation>\u0000 </semantics></math>. The κ<i>-mantle</i> <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>κ</mi>\u0000 </msub>\u0000 <annotation>$mathcal {M}_kappa$</annotation>\u0000 </semantics></math> is the intersection of all <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>&lt;</mo>\u0000 <mspace></mspace>\u0000 <mi>κ</mi>\u0000 </mrow>\u0000 <annotation>${mathord {&lt;}hspace{1.111pt}kappa }$</annotation>\u0000 </semantics></math>-grounds. We prove that certain partial choice principles in <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>κ</mi>\u0000 </msub>\u0000 <annotation>$mathcal {M}_kappa$</annotation>\u0000 </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87216191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Controlling the number of normal measures at successor cardinals 控制后继基数上正常度量的数量
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-28 DOI: 10.1002/malq.202000087
Arthur W. Apter
{"title":"Controlling the number of normal measures at successor cardinals","authors":"Arthur W. Apter","doi":"10.1002/malq.202000087","DOIUrl":"10.1002/malq.202000087","url":null,"abstract":"<p>We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom <math>\u0000 <semantics>\u0000 <mi>UA</mi>\u0000 <annotation>$mathsf {UA}$</annotation>\u0000 </semantics></math> (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117466315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some model theory of Th ( N , · ) $operatorname{Th}(mathbb {N},cdot )$ Th (N,·)$ operatorname{Th}(mathbb {N},cdot)$
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-28 DOI: 10.1002/malq.202100049
Atticus Stonestrom
{"title":"Some model theory of \u0000 \u0000 \u0000 Th\u0000 (\u0000 N\u0000 ,\u0000 ·\u0000 )\u0000 \u0000 $operatorname{Th}(mathbb {N},cdot )$","authors":"Atticus Stonestrom","doi":"10.1002/malq.202100049","DOIUrl":"10.1002/malq.202100049","url":null,"abstract":"<p>‘Skolem arithmetic’ is the complete theory <i>T</i> of the multiplicative monoid <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>,</mo>\u0000 <mo>·</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathbb {N},cdot )$</annotation>\u0000 </semantics></math>. We give a full characterization of the <math>\u0000 <semantics>\u0000 <mi>⌀</mi>\u0000 <annotation>$varnothing$</annotation>\u0000 </semantics></math>-definable stably embedded sets of <i>T</i>, showing in particular that, up to the relation of having the same definable closure, there is only one non-trivial one: the set of squarefree elements. We then prove that <i>T</i> has weak elimination of imaginaries but not elimination of finite imaginaries.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77779650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Determinacy and regularity properties for idealized forcings 理想力的确定性和规律性
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-27 DOI: 10.1002/malq.202100045
Daisuke Ikegami
{"title":"Determinacy and regularity properties for idealized forcings","authors":"Daisuke Ikegami","doi":"10.1002/malq.202100045","DOIUrl":"10.1002/malq.202100045","url":null,"abstract":"<p>We show under <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ZF</mi>\u0000 <mo>+</mo>\u0000 <mi>DC</mi>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>AD</mi>\u0000 <mi>R</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$sf {ZF}+ sf {DC}+ sf {AD}_mathbb {R}$</annotation>\u0000 </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ω</mi>\u0000 <mi>ω</mi>\u0000 </msup>\u0000 <annotation>$omega ^{omega }$</annotation>\u0000 </semantics></math> such that <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mi>I</mi>\u0000 </msub>\u0000 <annotation>$mathbb {P}_I$</annotation>\u0000 </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ZF</mi>\u0000 <mo>+</mo>\u0000 <mi>DC</mi>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mi>AD</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$sf {ZF}+ sf {DC}+ sf {AD}^+$</annotation>\u0000 </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <munder>\u0000 <mi>Δ</mi>\u0000 <mo>˜</mo>\u0000 </munder>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 <annotation>$undertilde{mathbf {Delta }}^2_1$</annotation>\u0000 </semantics></math>. If we do not assume <math>\u0000 <semantics>\u0000 <mi>DC</mi>\u0000 <annotation>$sf {DC}$</annotation>\u0000 </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ZF</mi>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>DC</mi>\u0000 <mi>R</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$sf {ZF}+ sf {DC}_{mathbb {R}}$</annotation>\u0000 </semantics></math> without using <math>\u0000 <semantics>\u0000 <mi>DC</mi>\u0000 <annotation>$sf {DC}$</annotation>\u0000 </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ω</mi>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83211376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Contents: (Math. Log. Quart. 2/2022) 内容:(数学。日志。夸脱。2/2022)
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-19 DOI: 10.1002/malq.202220001
{"title":"Contents: (Math. Log. Quart. 2/2022)","authors":"","doi":"10.1002/malq.202220001","DOIUrl":"https://doi.org/10.1002/malq.202220001","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202220001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134809814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gap-2 morass-definable η1-orderings Gap-2泥沼可定义η - 1排序
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-12 DOI: 10.1002/malq.201800002
Bob A. Dumas
{"title":"Gap-2 morass-definable η1-orderings","authors":"Bob A. Dumas","doi":"10.1002/malq.201800002","DOIUrl":"10.1002/malq.201800002","url":null,"abstract":"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ZFC</mi>\u0000 <mo>+</mo>\u0000 <mi>CH</mi>\u0000 </mrow>\u0000 <annotation>$mathsf {ZFC}+mathsf {CH}$</annotation>\u0000 </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <msub>\u0000 <mi>ℵ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 </msup>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>ℵ</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$2^{aleph _0}=aleph _3$</annotation>\u0000 </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85972414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The theory of hereditarily bounded sets 遗传有界集理论
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-04-03 DOI: 10.1002/malq.202100020
Emil Jeřábek
{"title":"The theory of hereditarily bounded sets","authors":"Emil Jeřábek","doi":"10.1002/malq.202100020","DOIUrl":"10.1002/malq.202100020","url":null,"abstract":"<p>We show that for any <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mi>ω</mi>\u0000 </mrow>\u0000 <annotation>$kin omega$</annotation>\u0000 </semantics></math>, the structure <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⟨</mo>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mo>∈</mo>\u0000 <mo>⟩</mo>\u0000 </mrow>\u0000 <annotation>$langle H_k,{in }rangle$</annotation>\u0000 </semantics></math> of sets that are hereditarily of size at most <i>k</i> is decidable. We provide a transparent complete axiomatization of its theory, a quantifier elimination result, and tight bounds on its computational complexity. This stands in stark contrast to the structure <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mi>ω</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mo>⋃</mo>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$V_omega =bigcup _kH_k$</annotation>\u0000 </semantics></math> of hereditarily finite sets, which is well known to be bi-interpretable with the standard model of arithmetic <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⟨</mo>\u0000 <mi>N</mi>\u0000 <mo>,</mo>\u0000 <mo>+</mo>\u0000 <mo>,</mo>\u0000 <mo>·</mo>\u0000 <mo>⟩</mo>\u0000 </mrow>\u0000 <annotation>$langle mathbb {N},+,cdot rangle$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86330155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bounding 2d functions by products of 1d functions 二维函数的边界是一维函数的乘积
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-03-30 DOI: 10.1002/malq.202000008
François Dorais, Dan Hathaway
{"title":"Bounding 2d functions by products of 1d functions","authors":"François Dorais,&nbsp;Dan Hathaway","doi":"10.1002/malq.202000008","DOIUrl":"10.1002/malq.202000008","url":null,"abstract":"<p>Given sets <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 <annotation>$X,Y$</annotation>\u0000 </semantics></math> and a regular cardinal μ, let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Φ</mi>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Y</mi>\u0000 <mo>,</mo>\u0000 <mi>μ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Phi (X,Y,mu )$</annotation>\u0000 </semantics></math> be the statement that for any function <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <mi>X</mi>\u0000 <mo>×</mo>\u0000 <mi>Y</mi>\u0000 <mo>→</mo>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation>$f : X times Y rightarrow mu$</annotation>\u0000 </semantics></math>, there are functions <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>g</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <mi>X</mi>\u0000 <mo>→</mo>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation>$g_1 : X rightarrow mu$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>g</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>:</mo>\u0000 <mi>Y</mi>\u0000 <mo>→</mo>\u0000 <mi>μ</mi>\u0000 </mrow>\u0000 <annotation>$g_2 : Y rightarrow mu$</annotation>\u0000 </semantics></math> such that for all <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>y</mi>\u0000 <mo>)</mo>\u0000 <mo>∈</mo>\u0000 <mi>X</mi>\u0000 <mo>×</mo>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 <annotation>$(x,y) in X times Y$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>y</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>≤</mo>\u0000 <mi>max</mi>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mi>g</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88863855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Rogers semilattices of limitwise monotonic numberings 有限单调数的罗杰斯半格
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2022-03-22 DOI: 10.1002/malq.202100077
N. Bazhenov, M. Mustafa, Z. Tleuliyeva
{"title":"Rogers semilattices of limitwise monotonic numberings","authors":"N. Bazhenov, M. Mustafa, Z. Tleuliyeva","doi":"10.1002/malq.202100077","DOIUrl":"https://doi.org/10.1002/malq.202100077","url":null,"abstract":"Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family S⊂P(ω)$Ssubset P(omega )$ is limitwise monotonic (l.m.) if every set ν(k)$nu (k)$ is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice Rlm(S)$R_{lm}(S)$ . The semilattices Rlm(S)$R_{lm}(S)$ exhibit a peculiar behavior, which puts them in‐between the classical Rogers semilattices (for computable families) and Rogers semilattices of Σ20$Sigma ^0_2$ ‐computable families. We show that every Rogers semilattice of a Σ20$Sigma ^0_2$ ‐computable family is isomorphic to some semilattice Rlm(S)$R_{lm}(S)$ . On the other hand, there are infinitely many isomorphism types of classical Rogers semilattices which can be realized as semilattices Rlm(S)$R_{lm}(S)$ . In particular, there is an l.m. family S such that Rlm(S)$R_{lm}(S)$ is isomorphic to the upper semilattice of c.e. m‐degrees. We prove that if an l.m. family S contains more than one element, then the poset Rlm(S)$R_{lm}(S)$ is infinite, and it is not a lattice. The l.m. numberings form an ideal (w.r.t. reducibility between numberings) inside the class of all Σ20$Sigma ^0_2$ ‐computable numberings. We prove that inside this class, the index set of l.m. numberings is Σ40$Sigma ^0_4$ ‐complete.","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86338556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信