Choiceless large cardinals and set-theoretic potentialism

Pub Date : 2022-07-06 DOI:10.1002/malq.202000026
Raffaella Cutolo, Joel David Hamkins
{"title":"Choiceless large cardinals and set-theoretic potentialism","authors":"Raffaella Cutolo,&nbsp;Joel David Hamkins","doi":"10.1002/malq.202000026","DOIUrl":null,"url":null,"abstract":"<p>We define a <i>potentialist system</i> of <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>-structures, i.e., a collection of <i>possible worlds</i> in the language of <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> connected by a binary <i>accessibility relation</i>, achieving a potentialist account of the full background set-theoretic universe <i>V</i>. The definition involves Berkeley cardinals, the strongest known large cardinal axioms, inconsistent with the Axiom of Choice. In fact, as background theory we assume just <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>. It turns out that the propositional modal assertions which are valid at every world of our system are exactly those in the modal theory <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>4</mn>\n <mo>.</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mathsf {S4.2}$</annotation>\n </semantics></math>. Moreover, we characterize the worlds satisfying the potentialist maximality principle, and thus the modal theory <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>5</mn>\n </mrow>\n <annotation>$\\mathsf {S5}$</annotation>\n </semantics></math>, both for assertions in the language of <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> and for assertions in the full potentialist language.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define a potentialist system of ZF $\mathsf {ZF}$ -structures, i.e., a collection of possible worlds in the language of ZF $\mathsf {ZF}$ connected by a binary accessibility relation, achieving a potentialist account of the full background set-theoretic universe V. The definition involves Berkeley cardinals, the strongest known large cardinal axioms, inconsistent with the Axiom of Choice. In fact, as background theory we assume just ZF $\mathsf {ZF}$ . It turns out that the propositional modal assertions which are valid at every world of our system are exactly those in the modal theory S 4 . 2 $\mathsf {S4.2}$ . Moreover, we characterize the worlds satisfying the potentialist maximality principle, and thus the modal theory S 5 $\mathsf {S5}$ , both for assertions in the language of ZF $\mathsf {ZF}$ and for assertions in the full potentialist language.

分享
查看原文
无选择的大基数和集合论的潜能论
我们定义了一个ZF $\mathsf {ZF}$ -结构的潜在系统,即由二元可达关系连接的ZF $\mathsf {ZF}$语言的可能世界的集合,实现了对完整背景集合论宇宙v的潜在解释。该定义涉及到与选择公理不一致的已知最强的大基数公理伯克利基数。事实上,作为背景理论,我们假设只是ZF $\mathsf {ZF}$。事实证明,在我们系统的每个世界中都有效的命题模态断言正是模态理论s4中的那些。2 $\mathsf {S4.2}$。此外,我们刻画了满足潜能主义极大性原则的世界,从而刻画了ZF $\mathsf {ZF}$语言中的断言和全潜能主义语言中的断言的模态理论S5 $\mathsf {S5}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信