Choice principles in local mantles

Pub Date : 2022-05-07 DOI:10.1002/malq.202000089
Farmer Schlutzenberg
{"title":"Choice principles in local mantles","authors":"Farmer Schlutzenberg","doi":"10.1002/malq.202000089","DOIUrl":null,"url":null,"abstract":"<p>Assume <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. Let κ be a cardinal. A <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math><i>-ground</i>\nis a transitive proper class <i>W</i> modelling <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>∈</mo>\n <mi>W</mi>\n </mrow>\n <annotation>$\\mathbb {P}\\in W$</annotation>\n </semantics></math> of cardinality <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>. The κ<i>-mantle</i> <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> is the intersection of all <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>-grounds. We prove that certain partial choice principles in <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Assume ZFC $\mathsf {ZFC}$ . Let κ be a cardinal. A < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ -ground is a transitive proper class W modelling ZFC $\mathsf {ZFC}$ such that V is a generic extension of W via a forcing P W $\mathbb {P}\in W$ of cardinality < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ . The κ-mantle M κ $\mathcal {M}_\kappa$ is the intersection of all < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ -grounds. We prove that certain partial choice principles in M κ $\mathcal {M}_\kappa$ are the consequence of κ being inaccessible/weakly compact, and some other related facts.

分享
查看原文
当地的选择原则
假设ZFC $\mathsf {ZFC}$。设κ为基数。一个 & lt;κ ${\mathord {<}\hspace{1.111pt}\kappa}$ - ground是一个可传递的固有类W,它对ZFC $\mathsf {ZFC}$建模,使得V是W的一个泛型扩展,通过在W$的基数中强制P∈W$ \mathbb {P}\& lt;κ ${\mathord {<}\hspace{1.111pt}\kappa}$。κ-地幔M κ $\mathcal {M}_\kappa$是所有<κ ${\mathord {<}\hspace{1.111pt}\kappa}$ -grounds。我们证明了M κ $\mathcal {M}_\kappa$中的某些部分选择原理是κ不可及/弱紧致的结果,以及其他一些相关事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信