当地的选择原则

IF 0.4 4区 数学 Q4 LOGIC
Farmer Schlutzenberg
{"title":"当地的选择原则","authors":"Farmer Schlutzenberg","doi":"10.1002/malq.202000089","DOIUrl":null,"url":null,"abstract":"<p>Assume <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. Let κ be a cardinal. A <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math><i>-ground</i>\nis a transitive proper class <i>W</i> modelling <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>∈</mo>\n <mi>W</mi>\n </mrow>\n <annotation>$\\mathbb {P}\\in W$</annotation>\n </semantics></math> of cardinality <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>. The κ<i>-mantle</i> <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> is the intersection of all <math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {&lt;}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>-grounds. We prove that certain partial choice principles in <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"264-278"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089","citationCount":"2","resultStr":"{\"title\":\"Choice principles in local mantles\",\"authors\":\"Farmer Schlutzenberg\",\"doi\":\"10.1002/malq.202000089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assume <math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math>. Let κ be a cardinal. A <math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {&lt;}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math><i>-ground</i>\\nis a transitive proper class <i>W</i> modelling <math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>∈</mo>\\n <mi>W</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {P}\\\\in W$</annotation>\\n </semantics></math> of cardinality <math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {&lt;}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math>. The κ<i>-mantle</i> <math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>κ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_\\\\kappa$</annotation>\\n </semantics></math> is the intersection of all <math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {&lt;}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math>-grounds. We prove that certain partial choice principles in <math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>κ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_\\\\kappa$</annotation>\\n </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"264-278\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

摘要

假设ZFC $\mathsf {ZFC}$。设κ为基数。一个 & lt;κ ${\mathord {<}\hspace{1.111pt}\kappa}$ - ground是一个可传递的固有类W,它对ZFC $\mathsf {ZFC}$建模,使得V是W的一个泛型扩展,通过在W$的基数中强制P∈W$ \mathbb {P}\& lt;κ ${\mathord {<}\hspace{1.111pt}\kappa}$。κ-地幔M κ $\mathcal {M}_\kappa$是所有<κ ${\mathord {<}\hspace{1.111pt}\kappa}$ -grounds。我们证明了M κ $\mathcal {M}_\kappa$中的某些部分选择原理是κ不可及/弱紧致的结果,以及其他一些相关事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choice principles in local mantles

Assume ZFC $\mathsf {ZFC}$ . Let κ be a cardinal. A < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ -ground is a transitive proper class W modelling ZFC $\mathsf {ZFC}$ such that V is a generic extension of W via a forcing P W $\mathbb {P}\in W$ of cardinality < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ . The κ-mantle M κ $\mathcal {M}_\kappa$ is the intersection of all < κ ${\mathord {<}\hspace{1.111pt}\kappa }$ -grounds. We prove that certain partial choice principles in M κ $\mathcal {M}_\kappa$ are the consequence of κ being inaccessible/weakly compact, and some other related facts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信