{"title":"当地的选择原则","authors":"Farmer Schlutzenberg","doi":"10.1002/malq.202000089","DOIUrl":null,"url":null,"abstract":"<p>Assume <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. Let κ be a cardinal. A <math>\n <semantics>\n <mrow>\n <mo><</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {<}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math><i>-ground</i>\nis a transitive proper class <i>W</i> modelling <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>∈</mo>\n <mi>W</mi>\n </mrow>\n <annotation>$\\mathbb {P}\\in W$</annotation>\n </semantics></math> of cardinality <math>\n <semantics>\n <mrow>\n <mo><</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {<}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>. The κ<i>-mantle</i> <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> is the intersection of all <math>\n <semantics>\n <mrow>\n <mo><</mo>\n <mspace></mspace>\n <mi>κ</mi>\n </mrow>\n <annotation>${\\mathord {<}\\hspace{1.111pt}\\kappa }$</annotation>\n </semantics></math>-grounds. We prove that certain partial choice principles in <math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>κ</mi>\n </msub>\n <annotation>$\\mathcal {M}_\\kappa$</annotation>\n </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"264-278"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089","citationCount":"2","resultStr":"{\"title\":\"Choice principles in local mantles\",\"authors\":\"Farmer Schlutzenberg\",\"doi\":\"10.1002/malq.202000089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assume <math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math>. Let κ be a cardinal. A <math>\\n <semantics>\\n <mrow>\\n <mo><</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {<}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math><i>-ground</i>\\nis a transitive proper class <i>W</i> modelling <math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math> such that <i>V</i> is a generic extension of <i>W</i> via a forcing <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>∈</mo>\\n <mi>W</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {P}\\\\in W$</annotation>\\n </semantics></math> of cardinality <math>\\n <semantics>\\n <mrow>\\n <mo><</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {<}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math>. The κ<i>-mantle</i> <math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>κ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_\\\\kappa$</annotation>\\n </semantics></math> is the intersection of all <math>\\n <semantics>\\n <mrow>\\n <mo><</mo>\\n <mspace></mspace>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>${\\\\mathord {<}\\\\hspace{1.111pt}\\\\kappa }$</annotation>\\n </semantics></math>-grounds. We prove that certain partial choice principles in <math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mi>κ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {M}_\\\\kappa$</annotation>\\n </semantics></math> are the consequence of κ being inaccessible/weakly compact, and some other related facts.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"264-278\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202000089\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Assume . Let κ be a cardinal. A -ground
is a transitive proper class W modelling such that V is a generic extension of W via a forcing of cardinality . The κ-mantle is the intersection of all -grounds. We prove that certain partial choice principles in are the consequence of κ being inaccessible/weakly compact, and some other related facts.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.