{"title":"没有选择公理的代数补全","authors":"Jørgen Harmse","doi":"10.1002/malq.202200001","DOIUrl":null,"url":null,"abstract":"<p>Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of <math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {Q}_p$</annotation>\n </semantics></math> can be constructed in Zermelo-Fraenkel set theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic completion without the axiom of choice\",\"authors\":\"Jørgen Harmse\",\"doi\":\"10.1002/malq.202200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of <math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\mathbb {Q}_p$</annotation>\\n </semantics></math> can be constructed in Zermelo-Fraenkel set theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of can be constructed in Zermelo-Fraenkel set theory.