{"title":"没有选择公理的代数补全","authors":"Jørgen Harmse","doi":"10.1002/malq.202200001","DOIUrl":null,"url":null,"abstract":"<p>Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of <math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {Q}_p$</annotation>\n </semantics></math> can be constructed in Zermelo-Fraenkel set theory.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 4","pages":"394-397"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic completion without the axiom of choice\",\"authors\":\"Jørgen Harmse\",\"doi\":\"10.1002/malq.202200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of <math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\mathbb {Q}_p$</annotation>\\n </semantics></math> can be constructed in Zermelo-Fraenkel set theory.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 4\",\"pages\":\"394-397\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo-Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of can be constructed in Zermelo-Fraenkel set theory.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.