{"title":"A note on \u0000 \u0000 fsg\u0000 $text{fsg}$\u0000 groups in p-adically closed fields","authors":"Will Johnson","doi":"10.1002/malq.202200026","DOIUrl":"https://doi.org/10.1002/malq.202200026","url":null,"abstract":"<p>Let <i>G</i> be a definable group in a <i>p</i>-adically closed field <i>M</i>. We show that <i>G</i> has finitely satisfiable generics (<math>\u0000 <semantics>\u0000 <mtext>fsg</mtext>\u0000 <annotation>$text{fsg}$</annotation>\u0000 </semantics></math>) if and only if <i>G</i> is definably compact. The case <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$M = mathbb {Q}_p$</annotation>\u0000 </semantics></math> was previously proved by Onshuus and Pillay.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 1","pages":"50-57"},"PeriodicalIF":0.3,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50154036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}