幂集和集的具有有限多个不动点的置换集

IF 0.4 4区 数学 Q4 LOGIC
Guozhen Shen
{"title":"幂集和集的具有有限多个不动点的置换集","authors":"Guozhen Shen","doi":"10.1002/malq.202100070","DOIUrl":null,"url":null,"abstract":"<p>For a cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, we write <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We investigate the relationships between <math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <annotation>$2^\\mathfrak {a}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for an arbitrary infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> (without the axiom of choice). It is proved in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <mo>≠</mo>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$2^\\mathfrak {a}\\ne \\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, and we show that this is the best possible result.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 1","pages":"40-45"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The power set and the set of permutations with finitely many non-fixed points of a set\",\"authors\":\"Guozhen Shen\",\"doi\":\"10.1002/malq.202100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a cardinal <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>, we write <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>. We investigate the relationships between <math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>a</mi>\\n </msup>\\n <annotation>$2^\\\\mathfrak {a}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for an arbitrary infinite cardinal <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math> in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> (without the axiom of choice). It is proved in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mi>a</mi>\\n </msup>\\n <mo>≠</mo>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$2^\\\\mathfrak {a}\\\\ne \\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for all infinite cardinals <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>, and we show that this is the best possible result.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"69 1\",\"pages\":\"40-45\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

对于基数$\mathfrak{a}$,我们写S fin(a)$\运算符名称{\mathcal{S}_{\text{fin}}(\mathfrak{a})$为基数为a$\mathfrak{a}$的集合的具有有限多个非不动点的置换集的基数。我们研究了2a$2^\mathfrak{a}$与S fin之间的关系(a)$\运算符名称{\mathcal{S}_{\text{fin}}(\mathfrak{a})$,用于ZF$\mathsf{ZF}$中的任意无限基数a$\mathfrak{a}$(没有选择公理)。在ZF$\mathsf{ZF}$中证明了2a≠S fin(a)$2^\mathfrak{a}\ ne \ operator name{\mathcal{S}_{\text{fin}}(\mathfrak{a})$对于所有无限基数a$\mathfrak{a}$,我们证明这是最好的可能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The power set and the set of permutations with finitely many non-fixed points of a set

For a cardinal  a $\mathfrak {a}$ , we write S fin ( a ) $\operatorname{\mathcal {S}_{\text{fin}}}(\mathfrak {a})$ for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality  a $\mathfrak {a}$ . We investigate the relationships between 2 a $2^\mathfrak {a}$ and S fin ( a ) $\operatorname{\mathcal {S}_{\text{fin}}}(\mathfrak {a})$ for an arbitrary infinite cardinal  a $\mathfrak {a}$ in  ZF $\mathsf {ZF}$ (without the axiom of choice). It is proved in  ZF $\mathsf {ZF}$ that 2 a S fin ( a ) $2^\mathfrak {a}\ne \operatorname{\mathcal {S}_{\text{fin}}}(\mathfrak {a})$ for all infinite cardinals  a $\mathfrak {a}$ , and we show that this is the best possible result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信