{"title":"幂集和集的具有有限多个不动点的置换集","authors":"Guozhen Shen","doi":"10.1002/malq.202100070","DOIUrl":null,"url":null,"abstract":"<p>For a cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, we write <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We investigate the relationships between <math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <annotation>$2^\\mathfrak {a}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for an arbitrary infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> (without the axiom of choice). It is proved in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <mo>≠</mo>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$2^\\mathfrak {a}\\ne \\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, and we show that this is the best possible result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The power set and the set of permutations with finitely many non-fixed points of a set\",\"authors\":\"Guozhen Shen\",\"doi\":\"10.1002/malq.202100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a cardinal <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>, we write <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>. We investigate the relationships between <math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>a</mi>\\n </msup>\\n <annotation>$2^\\\\mathfrak {a}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for an arbitrary infinite cardinal <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math> in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> (without the axiom of choice). It is proved in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <mi>a</mi>\\n </msup>\\n <mo>≠</mo>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mtext>fin</mtext>\\n </msub>\\n </mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$2^\\\\mathfrak {a}\\\\ne \\\\operatorname{\\\\mathcal {S}_{\\\\text{fin}}}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for all infinite cardinals <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>, and we show that this is the best possible result.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
对于基数$\mathfrak{a}$,我们写S fin(a)$\运算符名称{\mathcal{S}_{\text{fin}}(\mathfrak{a})$为基数为a$\mathfrak{a}$的集合的具有有限多个非不动点的置换集的基数。我们研究了2a$2^\mathfrak{a}$与S fin之间的关系(a)$\运算符名称{\mathcal{S}_{\text{fin}}(\mathfrak{a})$,用于ZF$\mathsf{ZF}$中的任意无限基数a$\mathfrak{a}$(没有选择公理)。在ZF$\mathsf{ZF}$中证明了2a≠S fin(a)$2^\mathfrak{a}\ ne \ operator name{\mathcal{S}_{\text{fin}}(\mathfrak{a})$对于所有无限基数a$\mathfrak{a}$,我们证明这是最好的可能结果。
The power set and the set of permutations with finitely many non-fixed points of a set
For a cardinal , we write for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality . We investigate the relationships between and for an arbitrary infinite cardinal in (without the axiom of choice). It is proved in that for all infinite cardinals , and we show that this is the best possible result.