可定义完全局部0 -极小结构的驯服性与可定义有界乘法

IF 0.4 4区 数学 Q4 LOGIC
Masato Fujita, Tomohiro Kawakami, Wataru Komine
{"title":"可定义完全局部0 -极小结构的驯服性与可定义有界乘法","authors":"Masato Fujita,&nbsp;Tomohiro Kawakami,&nbsp;Wataru Komine","doi":"10.1002/malq.202200004","DOIUrl":null,"url":null,"abstract":"<p>We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 4","pages":"496-515"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tameness of definably complete locally o-minimal structures and definable bounded multiplication\",\"authors\":\"Masato Fujita,&nbsp;Tomohiro Kawakami,&nbsp;Wataru Komine\",\"doi\":\"10.1002/malq.202200004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 4\",\"pages\":\"496-515\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 10

摘要

我们首先证明了离散可定义集合的投影像对于任意可定义完备的局部0 -极小结构又是离散的。这一事实与前一篇文章的结果一起暗示了一个驯服的维数理论和分解定理,这些定理被称为准特殊子流形。利用这一事实,研究了当乘法对任意有界开框的限制可定义时有序群的可定义完全局部0 -极小展开式。与有序域的0 -极小展开式类似,Łojasiewicz不等式、Tietze的可拓定理和伪可定义空间的亲和性对这样的结构成立,附加的假设是定义域和伪可定义空间是可定义紧的。这里,伪可定义空间是具有有限可定义地图集的拓扑空间。我们还证明了具有可定义紧定义域的可定义集值函数的Michael选择定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tameness of definably complete locally o-minimal structures and definable bounded multiplication

We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信