{"title":"可定义完全局部0 -极小结构的驯服性与可定义有界乘法","authors":"Masato Fujita, Tomohiro Kawakami, Wataru Komine","doi":"10.1002/malq.202200004","DOIUrl":null,"url":null,"abstract":"<p>We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tameness of definably complete locally o-minimal structures and definable bounded multiplication\",\"authors\":\"Masato Fujita, Tomohiro Kawakami, Wataru Komine\",\"doi\":\"10.1002/malq.202200004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tameness of definably complete locally o-minimal structures and definable bounded multiplication
We first show that the projection image of a discrete definable set is again discrete for an arbitrary definably complete locally o-minimal structure. This fact together with the results in a previous paper implies a tame dimension theory and a decomposition theorem into good-shaped definable subsets called quasi-special submanifolds. Using this fact, we investigate definably complete locally o-minimal expansions of ordered groups when the restriction of multiplication to an arbitrary bounded open box is definable. Similarly to o-minimal expansions of ordered fields, Łojasiewicz's inequality, Tietze's extension theorem and affiness of pseudo-definable spaces hold true for such structures under the extra assumption that the domains of definition and the pseudo-definable spaces are definably compact. Here, a pseudo-definable space is a topological space having finite definable atlases. We also demonstrate Michael's selection theorem for definable set-valued functions with definably compact domains of definition.