自同构不变测度与弱泛型自同构

IF 0.4 4区 数学 Q4 LOGIC
Gábor Sági
{"title":"自同构不变测度与弱泛型自同构","authors":"Gábor Sági","doi":"10.1002/malq.202100044","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> be a countable ℵ<sub>0</sub>-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>; the secondary motivation is to study the existence of weakly generic automorphisms of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>. Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of <i>A</i> and of <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math>; we also present sufficient conditions implying that the theory of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is amenable. More concretely, we show that if the set of locally finite automorphisms of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is dense (in particular, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> definable with parameters such that μ is invariant under <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math>. Moreover, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is saturated and the set of its locally finite automorphisms is dense (in particular, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is saturated and has weak generics), then the theory of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is amenable.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 4","pages":"458-478"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100044","citationCount":"0","resultStr":"{\"title\":\"Automorphism invariant measures and weakly generic automorphisms\",\"authors\":\"Gábor Sági\",\"doi\":\"10.1002/malq.202100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> be a countable ℵ<sub>0</sub>-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>; the secondary motivation is to study the existence of weakly generic automorphisms of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>. Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of <i>A</i> and of <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math>; we also present sufficient conditions implying that the theory of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is amenable. More concretely, we show that if the set of locally finite automorphisms of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is dense (in particular, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> definable with parameters such that μ is invariant under <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math>. Moreover, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is saturated and the set of its locally finite automorphisms is dense (in particular, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is saturated and has weak generics), then the theory of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is amenable.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 4\",\"pages\":\"458-478\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

设A $\mathcal {A}$是一个可计数的0-齐次结构。本工作的主要动机是研究A $\mathcal {A}$的自同构群Aut (A)$ \operatorname{Aut}(\mathcal {A})$的(子群)的不同适应性;次要动机是研究A $\mathcal {A}$的弱泛型自同构的存在性。其中,我们给出了在A和Aut (A)$ \operatorname{Aut}(\mathcal {A})$的某些子集上存在自同构不变概率测度的充分条件;我们也给出了A $\mathcal {A}$的理论成立的充分条件。更具体地说,我们证明了如果A $\mathcal {A}$的局部有限自同构集合是稠密的(特别是,如果A $\mathcal {A}$具有任意有限长度的自同构的弱泛型元组),那么在a $\mathcal {a}$的子集上存在一个有限可加概率测度μ,该子集可定义,且μ在Aut (a)$ \operatorname{Aut}(\mathcal {a})$下是不变的。此外,如果A $\mathcal {A}$是饱和的,并且它的局部有限自同构集是密集的(特别是,如果A $\mathcal {A}$是饱和的并且具有弱泛型),那么A $\mathcal {A}$的理论是适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphism invariant measures and weakly generic automorphisms

Let A $\mathcal {A}$ be a countable ℵ0-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ of A $\mathcal {A}$ ; the secondary motivation is to study the existence of weakly generic automorphisms of A $\mathcal {A}$ . Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of A and of Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ ; we also present sufficient conditions implying that the theory of A $\mathcal {A}$ is amenable. More concretely, we show that if the set of locally finite automorphisms of A $\mathcal {A}$ is dense (in particular, if A $\mathcal {A}$ has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of A $\mathcal {A}$ definable with parameters such that μ is invariant under Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ . Moreover, if A $\mathcal {A}$ is saturated and the set of its locally finite automorphisms is dense (in particular, if A $\mathcal {A}$ is saturated and has weak generics), then the theory of A $\mathcal {A}$ is amenable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信