自同构不变测度与弱泛型自同构

Pub Date : 2022-08-27 DOI:10.1002/malq.202100044
Gábor Sági
{"title":"自同构不变测度与弱泛型自同构","authors":"Gábor Sági","doi":"10.1002/malq.202100044","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> be a countable ℵ<sub>0</sub>-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>; the secondary motivation is to study the existence of weakly generic automorphisms of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>. Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of <i>A</i> and of <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math>; we also present sufficient conditions implying that the theory of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is amenable. More concretely, we show that if the set of locally finite automorphisms of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is dense (in particular, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> definable with parameters such that μ is invariant under <math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(\\mathcal {A})$</annotation>\n </semantics></math>. Moreover, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is saturated and the set of its locally finite automorphisms is dense (in particular, if <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is saturated and has weak generics), then the theory of <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is amenable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100044","citationCount":"0","resultStr":"{\"title\":\"Automorphism invariant measures and weakly generic automorphisms\",\"authors\":\"Gábor Sági\",\"doi\":\"10.1002/malq.202100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> be a countable ℵ<sub>0</sub>-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>; the secondary motivation is to study the existence of weakly generic automorphisms of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>. Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of <i>A</i> and of <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math>; we also present sufficient conditions implying that the theory of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is amenable. More concretely, we show that if the set of locally finite automorphisms of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is dense (in particular, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> definable with parameters such that μ is invariant under <math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(\\\\mathcal {A})$</annotation>\\n </semantics></math>. Moreover, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is saturated and the set of its locally finite automorphisms is dense (in particular, if <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is saturated and has weak generics), then the theory of <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is amenable.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202100044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设A $\mathcal {A}$是一个可计数的0-齐次结构。本工作的主要动机是研究A $\mathcal {A}$的自同构群Aut (A)$ \operatorname{Aut}(\mathcal {A})$的(子群)的不同适应性;次要动机是研究A $\mathcal {A}$的弱泛型自同构的存在性。其中,我们给出了在A和Aut (A)$ \operatorname{Aut}(\mathcal {A})$的某些子集上存在自同构不变概率测度的充分条件;我们也给出了A $\mathcal {A}$的理论成立的充分条件。更具体地说,我们证明了如果A $\mathcal {A}$的局部有限自同构集合是稠密的(特别是,如果A $\mathcal {A}$具有任意有限长度的自同构的弱泛型元组),那么在a $\mathcal {a}$的子集上存在一个有限可加概率测度μ,该子集可定义,且μ在Aut (a)$ \operatorname{Aut}(\mathcal {a})$下是不变的。此外,如果A $\mathcal {A}$是饱和的,并且它的局部有限自同构集是密集的(特别是,如果A $\mathcal {A}$是饱和的并且具有弱泛型),那么A $\mathcal {A}$的理论是适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Automorphism invariant measures and weakly generic automorphisms

Let A $\mathcal {A}$ be a countable ℵ0-homogeneous structure. The primary motivation of this work is to study different amenability properties of (subgroups of) the automorphism group Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ of A $\mathcal {A}$ ; the secondary motivation is to study the existence of weakly generic automorphisms of A $\mathcal {A}$ . Among others, we present sufficient conditions implying the existence of automorphism invariant probability measures on certain subsets of A and of Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ ; we also present sufficient conditions implying that the theory of A $\mathcal {A}$ is amenable. More concretely, we show that if the set of locally finite automorphisms of A $\mathcal {A}$ is dense (in particular, if A $\mathcal {A}$ has weakly generic tuples of automorphisms of arbitrary finite length), then there exists a finitely additive probability measure μ on the subsets of A $\mathcal {A}$ definable with parameters such that μ is invariant under Aut ( A ) $\operatorname{Aut}(\mathcal {A})$ . Moreover, if A $\mathcal {A}$ is saturated and the set of its locally finite automorphisms is dense (in particular, if A $\mathcal {A}$ is saturated and has weak generics), then the theory of A $\mathcal {A}$ is amenable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信