关于边缘着色和树木的注释

Pub Date : 2022-08-20 DOI:10.1002/malq.202100019
Adi Jarden, Ziv Shami
{"title":"关于边缘着色和树木的注释","authors":"Adi Jarden,&nbsp;Ziv Shami","doi":"10.1002/malq.202100019","DOIUrl":null,"url":null,"abstract":"<p>We point out some connections between existence of homogenous sets for certain edge colorings and existence of branches in certain trees. As a consequence, we get that any locally additive coloring (a notion introduced in the paper) of a cardinal κ has a homogeneous set of size κ provided that the number of colors μ satisfies <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mo>+</mo>\n </msup>\n <mo>&lt;</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\mu ^+&lt;\\kappa$</annotation>\n </semantics></math>. Another result is that an uncountable cardinal κ is weakly compact if and only if κ is regular, has the tree property, and for each <math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>&lt;</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\lambda ,\\mu &lt;\\kappa$</annotation>\n </semantics></math> there exists <math>\n <semantics>\n <mrow>\n <msup>\n <mi>κ</mi>\n <mo>∗</mo>\n </msup>\n <mo>&lt;</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\kappa ^*&lt;\\kappa$</annotation>\n </semantics></math> such that every tree of height μ with λ nodes has less than <math>\n <semantics>\n <msup>\n <mi>κ</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$\\kappa ^*$</annotation>\n </semantics></math> branches.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on edge colorings and trees\",\"authors\":\"Adi Jarden,&nbsp;Ziv Shami\",\"doi\":\"10.1002/malq.202100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We point out some connections between existence of homogenous sets for certain edge colorings and existence of branches in certain trees. As a consequence, we get that any locally additive coloring (a notion introduced in the paper) of a cardinal κ has a homogeneous set of size κ provided that the number of colors μ satisfies <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>μ</mi>\\n <mo>+</mo>\\n </msup>\\n <mo>&lt;</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\mu ^+&lt;\\\\kappa$</annotation>\\n </semantics></math>. Another result is that an uncountable cardinal κ is weakly compact if and only if κ is regular, has the tree property, and for each <math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>&lt;</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\lambda ,\\\\mu &lt;\\\\kappa$</annotation>\\n </semantics></math> there exists <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>κ</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>&lt;</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\kappa ^*&lt;\\\\kappa$</annotation>\\n </semantics></math> such that every tree of height μ with λ nodes has less than <math>\\n <semantics>\\n <msup>\\n <mi>κ</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\kappa ^*$</annotation>\\n </semantics></math> branches.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指出了某些边着色的齐次集的存在性与某些树的分支的存在性之间的联系。因此,我们得到了任何基数κ的局部加性着色(本文引入的一个概念)都有一个大小为κ的齐次集,只要颜色的个数μ满足μ + &lt;κ $\mu ^+<\kappa$。另一个结果是不可数基数κ是弱紧的,当且仅当κ是正则的,具有树的性质,并且对于每个λ, μ &lt;κ $\lambda ,\mu <\kappa$存在κ * &lt;κ $\kappa ^*<\kappa$使得每棵高度为μ且节点为λ的树都有小于κ∗$\kappa ^*$的分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on edge colorings and trees

We point out some connections between existence of homogenous sets for certain edge colorings and existence of branches in certain trees. As a consequence, we get that any locally additive coloring (a notion introduced in the paper) of a cardinal κ has a homogeneous set of size κ provided that the number of colors μ satisfies μ + < κ $\mu ^+<\kappa$ . Another result is that an uncountable cardinal κ is weakly compact if and only if κ is regular, has the tree property, and for each λ , μ < κ $\lambda ,\mu <\kappa$ there exists κ < κ $\kappa ^*<\kappa$ such that every tree of height μ with λ nodes has less than κ $\kappa ^*$  branches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信