{"title":"The power set and the set of permutations with finitely many non-fixed points of a set","authors":"Guozhen Shen","doi":"10.1002/malq.202100070","DOIUrl":null,"url":null,"abstract":"<p>For a cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, we write <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We investigate the relationships between <math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <annotation>$2^\\mathfrak {a}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for an arbitrary infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> (without the axiom of choice). It is proved in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <mo>≠</mo>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$2^\\mathfrak {a}\\ne \\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, and we show that this is the best possible result.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 1","pages":"40-45"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3
Abstract
For a cardinal , we write for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality . We investigate the relationships between and for an arbitrary infinite cardinal in (without the axiom of choice). It is proved in that for all infinite cardinals , and we show that this is the best possible result.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.