{"title":"The power set and the set of permutations with finitely many non-fixed points of a set","authors":"Guozhen Shen","doi":"10.1002/malq.202100070","DOIUrl":null,"url":null,"abstract":"<p>For a cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, we write <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We investigate the relationships between <math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <annotation>$2^\\mathfrak {a}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for an arbitrary infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> (without the axiom of choice). It is proved in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mi>a</mi>\n </msup>\n <mo>≠</mo>\n <mrow>\n <msub>\n <mi>S</mi>\n <mtext>fin</mtext>\n </msub>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$2^\\mathfrak {a}\\ne \\operatorname{\\mathcal {S}_{\\text{fin}}}(\\mathfrak {a})$</annotation>\n </semantics></math> for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, and we show that this is the best possible result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
For a cardinal , we write for the cardinality of the set of permutations with finitely many non-fixed points of a set which is of cardinality . We investigate the relationships between and for an arbitrary infinite cardinal in (without the axiom of choice). It is proved in that for all infinite cardinals , and we show that this is the best possible result.