Theory and application of labelling techniques for interpretability logics

IF 0.4 4区 数学 Q4 LOGIC
Evan Goris, Marta Bílková, Joost J. Joosten, Luka Mikec
{"title":"Theory and application of labelling techniques for interpretability logics","authors":"Evan Goris,&nbsp;Marta Bílková,&nbsp;Joost J. Joosten,&nbsp;Luka Mikec","doi":"10.1002/malq.202200015","DOIUrl":null,"url":null,"abstract":"<p>The notion of a <i>critical successor</i> [5] in relational semantics has been central to most classic modal completeness proofs in interpretability logics. In this paper we shall work with a more general notion, that of an <i>assuring successor</i>. This will enable more concisely formulated completeness proofs, both with respect to ordinary and generalised Veltman semantics. Due to their interesting theoretical properties, we will devote some space to the study of a particular kind of assuring labels, the so-called <i>full labels</i> and <i>maximal labels</i>. After a general treatment of assuringness, we shall apply it to obtain a completeness result for the modal logic <math>\n <semantics>\n <mi>ILP</mi>\n <annotation>$\\mathsf {ILP}$</annotation>\n </semantics></math> w.r.t. generalised semantics for a restricted class of frames.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"352-374"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

Abstract

The notion of a critical successor [5] in relational semantics has been central to most classic modal completeness proofs in interpretability logics. In this paper we shall work with a more general notion, that of an assuring successor. This will enable more concisely formulated completeness proofs, both with respect to ordinary and generalised Veltman semantics. Due to their interesting theoretical properties, we will devote some space to the study of a particular kind of assuring labels, the so-called full labels and maximal labels. After a general treatment of assuringness, we shall apply it to obtain a completeness result for the modal logic ILP $\mathsf {ILP}$ w.r.t. generalised semantics for a restricted class of frames.

可解释性逻辑标记技术的理论与应用
关系语义中关键后继[5]的概念一直是可解释性逻辑中大多数经典模态完备性证明的核心。在本文中,我们将使用一个更一般的概念,即保证后继的概念。这将使关于普通和广义Veltman语义的完备性证明更简明地公式化。由于它们有趣的理论性质,我们将花一些空间来研究一种特殊的保证标签,即所谓的完整标签和极大标签。在对保证性进行一般处理之后,我们将应用它来得到一类受限帧的模态逻辑ILP $\mathsf {ILP}$ w.r.t.广义语义的完备性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信