极值编号与不动点定理

IF 0.4 4区 数学 Q4 LOGIC
Marat Faizrahmanov
{"title":"极值编号与不动点定理","authors":"Marat Faizrahmanov","doi":"10.1002/malq.202200035","DOIUrl":null,"url":null,"abstract":"<p>We consider so-called <i>extremal</i> numberings that form the greatest or minimal degrees under the reducibility of all <i>A</i>-computable numberings of a given family of subsets of <math>\n <semantics>\n <mi>N</mi>\n <annotation>$\\mathbb {N}$</annotation>\n </semantics></math>, where <i>A</i> is an arbitrary oracle. Such numberings are very common in the literature and they are called <i>universal</i> and <i>minimal</i> <i>A</i>-computable numberings, respectively. The main question of this paper is when a universal or a minimal <i>A</i>-computable numbering satisfies the Recursion Theorem (with parameters). First we prove that the Turing degree of a set <i>A</i> is hyperimmune if and only if every universal <i>A</i>-computable numbering satisfies the Recursion Theorem. Next we prove that any universal <i>A</i>-computable numbering satisfies the Recursion Theorem with parameters if <i>A</i> computes a non-computable c.e. set. We also consider the property of precompleteness of universal numberings, which in turn is closely related to the Recursion Theorem. Ershov proved that a numbering is <i>precomplete</i> if and only if it satisfies the Recursion Theorem with parameters for partial computable functions. In this paper, we show that for a given <i>A</i>-computable numbering, in the general case, the Recursion Theorem with parameters for total computable functions is not equivalent to the precompleteness of the numbering, even if it is universal. Finally we prove that if <i>A</i> is high, then any infinite <i>A</i>-computable family has a minimal <i>A</i>-computable numbering that satisfies the Recursion Theorem.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 4","pages":"398-408"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extremal numberings and fixed point theorems\",\"authors\":\"Marat Faizrahmanov\",\"doi\":\"10.1002/malq.202200035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider so-called <i>extremal</i> numberings that form the greatest or minimal degrees under the reducibility of all <i>A</i>-computable numberings of a given family of subsets of <math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$\\\\mathbb {N}$</annotation>\\n </semantics></math>, where <i>A</i> is an arbitrary oracle. Such numberings are very common in the literature and they are called <i>universal</i> and <i>minimal</i> <i>A</i>-computable numberings, respectively. The main question of this paper is when a universal or a minimal <i>A</i>-computable numbering satisfies the Recursion Theorem (with parameters). First we prove that the Turing degree of a set <i>A</i> is hyperimmune if and only if every universal <i>A</i>-computable numbering satisfies the Recursion Theorem. Next we prove that any universal <i>A</i>-computable numbering satisfies the Recursion Theorem with parameters if <i>A</i> computes a non-computable c.e. set. We also consider the property of precompleteness of universal numberings, which in turn is closely related to the Recursion Theorem. Ershov proved that a numbering is <i>precomplete</i> if and only if it satisfies the Recursion Theorem with parameters for partial computable functions. In this paper, we show that for a given <i>A</i>-computable numbering, in the general case, the Recursion Theorem with parameters for total computable functions is not equivalent to the precompleteness of the numbering, even if it is universal. Finally we prove that if <i>A</i> is high, then any infinite <i>A</i>-computable family has a minimal <i>A</i>-computable numbering that satisfies the Recursion Theorem.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 4\",\"pages\":\"398-408\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑在给定的N $\mathbb {N}$子集的所有a -可计算数的可约性下形成最大或最小度的所谓极值数,其中a是一个任意的预言。这种编号在文献中非常常见,它们分别被称为全称和最小a -可计算编号。本文的主要问题是一个泛数或极小a -可计算数何时满足递归定理(带参数)。首先证明了集合a的图灵度是超免疫的当且仅当每个a -可计算的全称编号都满足递归定理。其次,我们证明了如果A计算一个不可计算的c.e.集合,则任何A可计算的普适编号都满足带参数的递归定理。我们还考虑了全称数的预完备性,这与递推定理密切相关。Ershov证明了一个编号是预完全的当且仅当它满足部分可计算函数的带参数的递推定理。本文证明了对于给定的a -可计算数,在一般情况下,全可计算函数的带参数递推定理并不等价于该数的预完备性,即使它是全称的。最后证明了如果A是高的,那么任何无限A-可计算族都有满足递归定理的最小A-可计算数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal numberings and fixed point theorems

We consider so-called extremal numberings that form the greatest or minimal degrees under the reducibility of all A-computable numberings of a given family of subsets of N $\mathbb {N}$ , where A is an arbitrary oracle. Such numberings are very common in the literature and they are called universal and minimal A-computable numberings, respectively. The main question of this paper is when a universal or a minimal A-computable numbering satisfies the Recursion Theorem (with parameters). First we prove that the Turing degree of a set A is hyperimmune if and only if every universal A-computable numbering satisfies the Recursion Theorem. Next we prove that any universal A-computable numbering satisfies the Recursion Theorem with parameters if A computes a non-computable c.e. set. We also consider the property of precompleteness of universal numberings, which in turn is closely related to the Recursion Theorem. Ershov proved that a numbering is precomplete if and only if it satisfies the Recursion Theorem with parameters for partial computable functions. In this paper, we show that for a given A-computable numbering, in the general case, the Recursion Theorem with parameters for total computable functions is not equivalent to the precompleteness of the numbering, even if it is universal. Finally we prove that if A is high, then any infinite A-computable family has a minimal A-computable numbering that satisfies the Recursion Theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信