关于分布近格的逻辑

IF 0.4 4区 数学 Q4 LOGIC
Luciano J. González
{"title":"关于分布近格的逻辑","authors":"Luciano J. González","doi":"10.1002/malq.202200012","DOIUrl":null,"url":null,"abstract":"<p>We study the propositional logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> associated with the variety of distributive nearlattices <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We prove that the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> coincides with the assertional logic associated with the variety <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math> and with the order-based logic associated with <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We obtain a characterization of the reduced matrix models of logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>. We develop a connection between the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> and the <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>∧</mo>\n <mo>,</mo>\n <mo>∨</mo>\n <mo>,</mo>\n <mi>⊤</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace \\wedge ,\\vee ,\\top \\rbrace$</annotation>\n </semantics></math>-fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"375-385"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the logic of distributive nearlattices\",\"authors\":\"Luciano J. González\",\"doi\":\"10.1002/malq.202200012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the propositional logic <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>DN</mi>\\n </msub>\\n <annotation>$\\\\mathcal {S}_\\\\mathbb {DN}$</annotation>\\n </semantics></math> associated with the variety of distributive nearlattices <math>\\n <semantics>\\n <mi>DN</mi>\\n <annotation>$\\\\mathbb {DN}$</annotation>\\n </semantics></math>. We prove that the logic <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>DN</mi>\\n </msub>\\n <annotation>$\\\\mathcal {S}_\\\\mathbb {DN}$</annotation>\\n </semantics></math> coincides with the assertional logic associated with the variety <math>\\n <semantics>\\n <mi>DN</mi>\\n <annotation>$\\\\mathbb {DN}$</annotation>\\n </semantics></math> and with the order-based logic associated with <math>\\n <semantics>\\n <mi>DN</mi>\\n <annotation>$\\\\mathbb {DN}$</annotation>\\n </semantics></math>. We obtain a characterization of the reduced matrix models of logic <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>DN</mi>\\n </msub>\\n <annotation>$\\\\mathcal {S}_\\\\mathbb {DN}$</annotation>\\n </semantics></math>. We develop a connection between the logic <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>DN</mi>\\n </msub>\\n <annotation>$\\\\mathcal {S}_\\\\mathbb {DN}$</annotation>\\n </semantics></math> and the <math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mo>∧</mo>\\n <mo>,</mo>\\n <mo>∨</mo>\\n <mo>,</mo>\\n <mi>⊤</mi>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace \\\\wedge ,\\\\vee ,\\\\top \\\\rbrace$</annotation>\\n </semantics></math>-fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic <math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>DN</mi>\\n </msub>\\n <annotation>$\\\\mathcal {S}_\\\\mathbb {DN}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"375-385\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 10

摘要

研究了与分布近格DN $\mathbb {DN}$相关的命题逻辑S DN $\mathcal {S}_\mathbb {DN}$。我们证明了逻辑S DN $\mathcal {S}_\mathbb {DN}$与与品种DN $\mathbb {DN}$相关联的断言逻辑和与DN $\mathbb {DN}$相关联的基于顺序的逻辑是一致的。我们得到了逻辑S DN $\mathcal {S}_\mathbb {DN}$的约简矩阵模型的一个表征。我们建立了逻辑S DN $\mathcal {S}_\mathbb {DN}$与经典逻辑的{∧,∨,冒出}$ \rbrace \wedge,\vee,\top \rbrace$ -片段之间的联系。最后,我们给出了逻辑sdn $\mathcal {S}_\mathbb {DN}$的两个hilbert式公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the logic of distributive nearlattices

We study the propositional logic S DN $\mathcal {S}_\mathbb {DN}$ associated with the variety of distributive nearlattices DN $\mathbb {DN}$ . We prove that the logic S DN $\mathcal {S}_\mathbb {DN}$ coincides with the assertional logic associated with the variety DN $\mathbb {DN}$ and with the order-based logic associated with DN $\mathbb {DN}$ . We obtain a characterization of the reduced matrix models of logic S DN $\mathcal {S}_\mathbb {DN}$ . We develop a connection between the logic S DN $\mathcal {S}_\mathbb {DN}$ and the { , , } $\lbrace \wedge ,\vee ,\top \rbrace$ -fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic S DN $\mathcal {S}_\mathbb {DN}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信