On the logic of distributive nearlattices

Pub Date : 2022-07-01 DOI:10.1002/malq.202200012
Luciano J. González
{"title":"On the logic of distributive nearlattices","authors":"Luciano J. González","doi":"10.1002/malq.202200012","DOIUrl":null,"url":null,"abstract":"<p>We study the propositional logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> associated with the variety of distributive nearlattices <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We prove that the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> coincides with the assertional logic associated with the variety <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math> and with the order-based logic associated with <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We obtain a characterization of the reduced matrix models of logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>. We develop a connection between the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> and the <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>∧</mo>\n <mo>,</mo>\n <mo>∨</mo>\n <mo>,</mo>\n <mi>⊤</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace \\wedge ,\\vee ,\\top \\rbrace$</annotation>\n </semantics></math>-fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the propositional logic S DN $\mathcal {S}_\mathbb {DN}$ associated with the variety of distributive nearlattices DN $\mathbb {DN}$ . We prove that the logic S DN $\mathcal {S}_\mathbb {DN}$ coincides with the assertional logic associated with the variety DN $\mathbb {DN}$ and with the order-based logic associated with DN $\mathbb {DN}$ . We obtain a characterization of the reduced matrix models of logic S DN $\mathcal {S}_\mathbb {DN}$ . We develop a connection between the logic S DN $\mathcal {S}_\mathbb {DN}$ and the { , , } $\lbrace \wedge ,\vee ,\top \rbrace$ -fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic S DN $\mathcal {S}_\mathbb {DN}$ .

分享
查看原文
关于分布近格的逻辑
研究了与分布近格DN $\mathbb {DN}$相关的命题逻辑S DN $\mathcal {S}_\mathbb {DN}$。我们证明了逻辑S DN $\mathcal {S}_\mathbb {DN}$与与品种DN $\mathbb {DN}$相关联的断言逻辑和与DN $\mathbb {DN}$相关联的基于顺序的逻辑是一致的。我们得到了逻辑S DN $\mathcal {S}_\mathbb {DN}$的约简矩阵模型的一个表征。我们建立了逻辑S DN $\mathcal {S}_\mathbb {DN}$与经典逻辑的{∧,∨,冒出}$ \rbrace \wedge,\vee,\top \rbrace$ -片段之间的联系。最后,我们给出了逻辑sdn $\mathcal {S}_\mathbb {DN}$的两个hilbert式公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信