{"title":"On the logic of distributive nearlattices","authors":"Luciano J. González","doi":"10.1002/malq.202200012","DOIUrl":null,"url":null,"abstract":"<p>We study the propositional logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> associated with the variety of distributive nearlattices <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We prove that the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> coincides with the assertional logic associated with the variety <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math> and with the order-based logic associated with <math>\n <semantics>\n <mi>DN</mi>\n <annotation>$\\mathbb {DN}$</annotation>\n </semantics></math>. We obtain a characterization of the reduced matrix models of logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>. We develop a connection between the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math> and the <math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>∧</mo>\n <mo>,</mo>\n <mo>∨</mo>\n <mo>,</mo>\n <mi>⊤</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace \\wedge ,\\vee ,\\top \\rbrace$</annotation>\n </semantics></math>-fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>DN</mi>\n </msub>\n <annotation>$\\mathcal {S}_\\mathbb {DN}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We study the propositional logic associated with the variety of distributive nearlattices . We prove that the logic coincides with the assertional logic associated with the variety and with the order-based logic associated with . We obtain a characterization of the reduced matrix models of logic . We develop a connection between the logic and the -fragment of classical logic. Finally, we present two Hilbert-style axiomatizations for the logic .