改进经典原理的算术层次

IF 0.4 4区 数学 Q4 LOGIC
Makoto Fujiwara, Taishi Kurahashi
{"title":"改进经典原理的算术层次","authors":"Makoto Fujiwara,&nbsp;Taishi Kurahashi","doi":"10.1002/malq.202000077","DOIUrl":null,"url":null,"abstract":"<p>We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, De Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"318-345"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Refining the arithmetical hierarchy of classical principles\",\"authors\":\"Makoto Fujiwara,&nbsp;Taishi Kurahashi\",\"doi\":\"10.1002/malq.202000077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, De Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"318-345\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

通过对各种经典原理在和庭算法上的可导性关系的细致研究,完善了各种经典原理的算术层次。我们主要研究了排中律、德摩尔根定律、双重否定消去法、集合原理和定域公理的一些限制版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining the arithmetical hierarchy of classical principles

We refine the arithmetical hierarchy of various classical principles by finely investigating the derivability relations between these principles over Heyting arithmetic. We mainly investigate some restricted versions of the law of excluded middle, De Morgan's law, the double negation elimination, the collection principle and the constant domain axiom.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信