控制后继基数上正常度量的数量

Pub Date : 2022-04-28 DOI:10.1002/malq.202000087
Arthur W. Apter
{"title":"控制后继基数上正常度量的数量","authors":"Arthur W. Apter","doi":"10.1002/malq.202000087","DOIUrl":null,"url":null,"abstract":"<p>We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom <math>\n <semantics>\n <mi>UA</mi>\n <annotation>$\\mathsf {UA}$</annotation>\n </semantics></math> (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the number of normal measures at successor cardinals\",\"authors\":\"Arthur W. Apter\",\"doi\":\"10.1002/malq.202000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom <math>\\n <semantics>\\n <mi>UA</mi>\\n <annotation>$\\\\mathsf {UA}$</annotation>\\n </semantics></math> (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在选择公理为假的宇宙中,后继基数所能携带的正常测度的数目。当考虑奇异基数的后继时,我们建立了假设超紧性实例的相对一致性结果,以及超功率公理UA $\mathsf {UA}$(由Goldberg在[12]中引入)。当考虑正则基数的后继时,我们仅假设存在一个可测量基数,就建立了相对一致性结果。这允许一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Controlling the number of normal measures at successor cardinals

We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom UA $\mathsf {UA}$ (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信