{"title":"理想力的确定性和规律性","authors":"Daisuke Ikegami","doi":"10.1002/malq.202100045","DOIUrl":null,"url":null,"abstract":"<p>We show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msub>\n <mi>AD</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}_\\mathbb {R}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n <mo>+</mo>\n <msup>\n <mi>AD</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}+ \\sf {AD}^+$</annotation>\n </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\n <semantics>\n <msubsup>\n <munder>\n <mi>Δ</mi>\n <mo>˜</mo>\n </munder>\n <mn>1</mn>\n <mn>2</mn>\n </msubsup>\n <annotation>$\\undertilde{\\mathbf {\\Delta }}^2_1$</annotation>\n </semantics></math>. If we do not assume <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <msub>\n <mi>DC</mi>\n <mi>R</mi>\n </msub>\n </mrow>\n <annotation>$\\sf {ZF}+ \\sf {DC}_{\\mathbb {R}}$</annotation>\n </semantics></math> without using <math>\n <semantics>\n <mi>DC</mi>\n <annotation>$\\sf {DC}$</annotation>\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\n <semantics>\n <msup>\n <mi>ω</mi>\n <mi>ω</mi>\n </msup>\n <annotation>$\\omega ^{\\omega }$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\mathbb {P}_I$</annotation>\n </semantics></math> is strongly proper assuming every set of reals is ∞-Borel and there is no ω<sub>1</sub>-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"68 3","pages":"310-317"},"PeriodicalIF":0.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determinacy and regularity properties for idealized forcings\",\"authors\":\"Daisuke Ikegami\",\"doi\":\"10.1002/malq.202100045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show under <math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mo>+</mo>\\n <mi>DC</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>AD</mi>\\n <mi>R</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\sf {ZF}+ \\\\sf {DC}+ \\\\sf {AD}_\\\\mathbb {R}$</annotation>\\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\\n <semantics>\\n <msup>\\n <mi>ω</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\omega ^{\\\\omega }$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <msub>\\n <mi>P</mi>\\n <mi>I</mi>\\n </msub>\\n <annotation>$\\\\mathbb {P}_I$</annotation>\\n </semantics></math> is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under <math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mo>+</mo>\\n <mi>DC</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>AD</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$\\\\sf {ZF}+ \\\\sf {DC}+ \\\\sf {AD}^+$</annotation>\\n </semantics></math> if we additionally assume that the set of Borel codes for <i>I</i>-positive sets is <math>\\n <semantics>\\n <msubsup>\\n <munder>\\n <mi>Δ</mi>\\n <mo>˜</mo>\\n </munder>\\n <mn>1</mn>\\n <mn>2</mn>\\n </msubsup>\\n <annotation>$\\\\undertilde{\\\\mathbf {\\\\Delta }}^2_1$</annotation>\\n </semantics></math>. If we do not assume <math>\\n <semantics>\\n <mi>DC</mi>\\n <annotation>$\\\\sf {DC}$</annotation>\\n </semantics></math>, the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under <math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>DC</mi>\\n <mi>R</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\sf {ZF}+ \\\\sf {DC}_{\\\\mathbb {R}}$</annotation>\\n </semantics></math> without using <math>\\n <semantics>\\n <mi>DC</mi>\\n <annotation>$\\\\sf {DC}$</annotation>\\n </semantics></math> that every set of reals is <i>I</i>-regular for any σ-ideal <i>I</i> on the Baire space <math>\\n <semantics>\\n <msup>\\n <mi>ω</mi>\\n <mi>ω</mi>\\n </msup>\\n <annotation>$\\\\omega ^{\\\\omega }$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <msub>\\n <mi>P</mi>\\n <mi>I</mi>\\n </msub>\\n <annotation>$\\\\mathbb {P}_I$</annotation>\\n </semantics></math> is strongly proper assuming every set of reals is ∞-Borel and there is no ω<sub>1</sub>-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"68 3\",\"pages\":\"310-317\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1
摘要
我们证明在ZF + DC + AD R $\sf {ZF}+ \sf {DC}+ \sf {AD}_\mathbb {R}$下对于任何σ-理想I在Baire空间ω ω $\omega ^{\omega }$上都是I正则的,使得p1 $\mathbb {P}_I$是正确的。这就回答了Khomskii的问题[7,问题2.6.5]。我们还证明了在ZF + DC + AD + $\sf {ZF}+ \sf {DC}+ \sf {AD}^+$下,如果我们另外假设i -正集的Borel码集为Δ ~ 1,则同样的结论成立2 . $\undertilde{\mathbf {\Delta }}^2_1$。如果我们不假设DC $\sf {DC}$,正如Asperó和Karagila[1]所指出的那样,适当性的概念变得模糊。使用类似于Bagaria和Bosch b[2]引入的强适当性概念,我们证明在ZF + DC R $\sf {ZF}+ \sf {DC}_{\mathbb {R}}$下,不使用DC $\sf {DC}$,对于任何σ-理想I在贝尔空间ω ω $\omega ^{\omega }$上,每一组实数是I正则的使得pi $\mathbb {P}_I$是强适当的假设每个实数集合都是∞-Borel并且没有ω - 1不同实数序列。特别地,同样的结论也适用于Solovay模型。
Determinacy and regularity properties for idealized forcings
We show under that every set of reals is I-regular for any σ-ideal I on the Baire space such that is proper. This answers the question of Khomskii [7, Question 2.6.5]. We also show that the same conclusion holds under if we additionally assume that the set of Borel codes for I-positive sets is . If we do not assume , the notion of properness becomes obscure as pointed out by Asperó and Karagila [1]. Using the notion of strong properness similar to the one introduced by Bagaria and Bosch [2], we show under without using that every set of reals is I-regular for any σ-ideal I on the Baire space such that is strongly proper assuming every set of reals is ∞-Borel and there is no ω1-sequence of distinct reals. In particular, the same conclusion holds in a Solovay model.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.