Gap-2 morass-definable η1-orderings

Pub Date : 2022-04-12 DOI:10.1002/malq.201800002
Bob A. Dumas
{"title":"Gap-2 morass-definable η1-orderings","authors":"Bob A. Dumas","doi":"10.1002/malq.201800002","DOIUrl":null,"url":null,"abstract":"<p>We prove that in the Cohen extension adding ℵ<sub>3</sub> generic reals to a model of <math>\n <semantics>\n <mrow>\n <mi>ZFC</mi>\n <mo>+</mo>\n <mi>CH</mi>\n </mrow>\n <annotation>$\\mathsf {ZFC}+\\mathsf {CH}$</annotation>\n </semantics></math> containing a simplified (ω<sub>1</sub>, 2)-morass, gap-2 morass-definable η<sub>1</sub>-orderings with cardinality ℵ<sub>3</sub> are order-isomorphic. Hence it is consistent that <math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msub>\n <mi>ℵ</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$2^{\\aleph _0}=\\aleph _3$</annotation>\n </semantics></math> and that morass-definable η<sub>1</sub>-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω<sub>1</sub> to an order-preserving bijection between objects of cardinality ℵ<sub>3</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.201800002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that in the Cohen extension adding ℵ3 generic reals to a model of ZFC + CH $\mathsf {ZFC}+\mathsf {CH}$ containing a simplified (ω1, 2)-morass, gap-2 morass-definable η1-orderings with cardinality ℵ3 are order-isomorphic. Hence it is consistent that 2 0 = 3 $2^{\aleph _0}=\aleph _3$ and that morass-definable η1-orderings with cardinality of the continuum are order-isomorphic. We prove that there are ultrapowers of R $\mathbb {R}$ over ω that are gap-2 morass-definable. The constructions use a simplified gap-2 morass, and commutativity with morass-maps and morass-embeddings, to extend a transfinite back-and-forth construction of order-type ω1 to an order-preserving bijection between objects of cardinality ℵ3.

分享
查看原文
Gap-2泥沼可定义η - 1排序
在Cohen扩展中,我们证明了在包含一个简化的(ω 1,2)-morass的ZFC + CH $\mathsf {ZFC}+\mathsf {CH}$的模型中添加了λ 3的一般实数是序同构的。因此,2 ~ 0 = ~ 3$ 2^{\aleph _0}=\aleph _3$,连续统的基数上的沼泽可定义η - 1序是序同构的。我们证明了R $\mathbb {R}$ / ω的超幂是gap-2沼泽可定义的。该构造使用简化的间隙-2泥沼,以及泥沼映射和泥沼嵌入的交换性,将阶型ω1的超限来回构造扩展到基数为ω 3的对象之间的保序双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信