自由F_2$ F_2$集的悖论分解与Hahn-Banach公理

IF 0.4 4区 数学 Q4 LOGIC
Marianne Morillon
{"title":"自由F_2$ F_2$集的悖论分解与Hahn-Banach公理","authors":"Marianne Morillon","doi":"10.1002/malq.202400003","DOIUrl":null,"url":null,"abstract":"<p>Denoting by <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math> the free group over a two-element alphabet, we show in set-theory without the axiom of choice <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that the existence of a (2, 2)-paradoxical decomposition of free <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math>-sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> of real numbers. Our result is linked to the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(m,n)$</annotation>\n </semantics></math>-paradoxical decompositions of free <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math>-sets previously obtained by Pawlikowski (<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mi>n</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m=n=3$</annotation>\n </semantics></math>, cf. [11]) and then by Sato and Shioya (<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m=3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>, cf. [13]) with the sole Hahn-Banach axiom.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"367-387"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paradoxical decompositions of free \\n \\n \\n F\\n 2\\n \\n $F_2$\\n -sets and the Hahn-Banach axiom\",\"authors\":\"Marianne Morillon\",\"doi\":\"10.1002/malq.202400003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denoting by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math> the free group over a two-element alphabet, we show in set-theory without the axiom of choice <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> that the existence of a (2, 2)-paradoxical decomposition of free <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math>-sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> of real numbers. Our result is linked to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(m,n)$</annotation>\\n </semantics></math>-paradoxical decompositions of free <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math>-sets previously obtained by Pawlikowski (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$m=n=3$</annotation>\\n </semantics></math>, cf. [11]) and then by Sato and Shioya (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$m=3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math>, cf. [13]) with the sole Hahn-Banach axiom.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"367-387\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

用f2 $F_2$表示双元素字母表上的自由群,在没有选择公理ZF $\mathsf {ZF}$的集合论中,我们证明了自由的f2 $F_2$ -集合的(2,2)-悖论分解的存在性,是由Hahn-Banach公理的一个弱推论与对的选择公理的一个弱推论结合而来的。在三维欧几里德空间中,有4个球面的悖论分解在ZF $\mathsf {ZF}$中的存在性,是由同样的两个命题推导出来的,它们被限制在实数集R $\mathbb {R}$中。我们的结果与(m)有关,n)$ (m,n)$ -先前由Pawlikowski (m =n=3$ m=n=3$)得到的自由f2 $F_2$集的矛盾分解,cf.[11]),然后由Sato和Shioya (m=3$ m=3$和n=2$ n=2$, cf.[13])用唯一的Hahn-Banach公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paradoxical decompositions of free F 2 $F_2$ -sets and the Hahn-Banach axiom

Denoting by F 2 $F_2$ the free group over a two-element alphabet, we show in set-theory without the axiom of choice ZF $\mathsf {ZF}$ that the existence of a (2, 2)-paradoxical decomposition of free F 2 $F_2$ -sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in ZF $\mathsf {ZF}$ of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set R $\mathbb {R}$ of real numbers. Our result is linked to the ( m , n ) $(m,n)$ -paradoxical decompositions of free F 2 $F_2$ -sets previously obtained by Pawlikowski ( m = n = 3 $m=n=3$ , cf. [11]) and then by Sato and Shioya ( m = 3 $m=3$ and n = 2 $n=2$ , cf. [13]) with the sole Hahn-Banach axiom.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信