{"title":"自由F_2$ F_2$集的悖论分解与Hahn-Banach公理","authors":"Marianne Morillon","doi":"10.1002/malq.202400003","DOIUrl":null,"url":null,"abstract":"<p>Denoting by <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math> the free group over a two-element alphabet, we show in set-theory without the axiom of choice <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> that the existence of a (2, 2)-paradoxical decomposition of free <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math>-sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> of real numbers. Our result is linked to the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(m,n)$</annotation>\n </semantics></math>-paradoxical decompositions of free <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n <annotation>$F_2$</annotation>\n </semantics></math>-sets previously obtained by Pawlikowski (<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mi>n</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m=n=3$</annotation>\n </semantics></math>, cf. [11]) and then by Sato and Shioya (<span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$m=3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>, cf. [13]) with the sole Hahn-Banach axiom.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"367-387"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paradoxical decompositions of free \\n \\n \\n F\\n 2\\n \\n $F_2$\\n -sets and the Hahn-Banach axiom\",\"authors\":\"Marianne Morillon\",\"doi\":\"10.1002/malq.202400003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denoting by <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math> the free group over a two-element alphabet, we show in set-theory without the axiom of choice <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> that the existence of a (2, 2)-paradoxical decomposition of free <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math>-sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> of real numbers. Our result is linked to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(m,n)$</annotation>\\n </semantics></math>-paradoxical decompositions of free <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$F_2$</annotation>\\n </semantics></math>-sets previously obtained by Pawlikowski (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$m=n=3$</annotation>\\n </semantics></math>, cf. [11]) and then by Sato and Shioya (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$m=3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n=2$</annotation>\\n </semantics></math>, cf. [13]) with the sole Hahn-Banach axiom.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"367-387\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Paradoxical decompositions of free
F
2
$F_2$
-sets and the Hahn-Banach axiom
Denoting by the free group over a two-element alphabet, we show in set-theory without the axiom of choice that the existence of a (2, 2)-paradoxical decomposition of free -sets follows from the conjunction of a weakened consequence of the Hahn-Banach axiom and a weakened consequence of the axiom of choice for pairs. The existence in of a paradoxical decomposition with 4 pieces of the sphere in the 3-dimensional euclidean space follows from the same two statements restricted to the set of real numbers. Our result is linked to the -paradoxical decompositions of free -sets previously obtained by Pawlikowski (, cf. [11]) and then by Sato and Shioya ( and , cf. [13]) with the sole Hahn-Banach axiom.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.