马丁极大值下的完全正规非实紧空间

IF 0.4 4区 数学 Q4 LOGIC
Tetsuya Ishiu
{"title":"马丁极大值下的完全正规非实紧空间","authors":"Tetsuya Ishiu","doi":"10.1002/malq.202400002","DOIUrl":null,"url":null,"abstract":"<p>We analyze the behavior of a perfectly normal nonrealcompact space <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>τ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\omega _1, \\tau)$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\omega _1$</annotation>\n </semantics></math> such that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\gamma &lt;\\omega _1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-open and <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>+</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$\\gamma +\\omega$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-closed under Martin's Maximum. We show that there exists a club subset <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\omega _1$</annotation>\n </semantics></math> such that for a stationary subset of <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>∈</mo>\n <mo>acc</mo>\n <mo>(</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\delta \\in \\operatorname{acc}(D)$</annotation>\n </semantics></math>, for all <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-open neighborhood <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mo>+</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$\\delta +n$</annotation>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mrow>\n <mi>η</mi>\n <mo>&lt;</mo>\n <mi>δ</mi>\n </mrow>\n <annotation>$\\eta &lt;\\delta$</annotation>\n </semantics></math> such that for all <span></span><math>\n <semantics>\n <mrow>\n <mi>ξ</mi>\n <mo>∈</mo>\n <mi>D</mi>\n <mo>∩</mo>\n <mo>[</mo>\n <mi>η</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\xi \\in D\\cap [\\eta, \\delta)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>∩</mo>\n <mi>ξ</mi>\n </mrow>\n <annotation>$N\\cap \\xi$</annotation>\n </semantics></math> is unbounded in <span></span><math>\n <semantics>\n <mi>ξ</mi>\n <annotation>$\\xi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"388-397"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202400002","citationCount":"0","resultStr":"{\"title\":\"Perfectly normal nonrealcompact spaces under Martin's Maximum\",\"authors\":\"Tetsuya Ishiu\",\"doi\":\"10.1002/malq.202400002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze the behavior of a perfectly normal nonrealcompact space <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\omega _1, \\\\tau)$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\omega _1$</annotation>\\n </semantics></math> such that for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\gamma &lt;\\\\omega _1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>γ</mi>\\n <annotation>$\\\\gamma$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-open and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n <mo>+</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$\\\\gamma +\\\\omega$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-closed under Martin's Maximum. We show that there exists a club subset <span></span><math>\\n <semantics>\\n <mi>D</mi>\\n <annotation>$D$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\omega _1$</annotation>\\n </semantics></math> such that for a stationary subset of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>∈</mo>\\n <mo>acc</mo>\\n <mo>(</mo>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\delta \\\\in \\\\operatorname{acc}(D)$</annotation>\\n </semantics></math>, for all <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-open neighborhood <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$\\\\delta +n$</annotation>\\n </semantics></math>, there exists <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>η</mi>\\n <mo>&lt;</mo>\\n <mi>δ</mi>\\n </mrow>\\n <annotation>$\\\\eta &lt;\\\\delta$</annotation>\\n </semantics></math> such that for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ξ</mi>\\n <mo>∈</mo>\\n <mi>D</mi>\\n <mo>∩</mo>\\n <mo>[</mo>\\n <mi>η</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\xi \\\\in D\\\\cap [\\\\eta, \\\\delta)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>∩</mo>\\n <mi>ξ</mi>\\n </mrow>\\n <annotation>$N\\\\cap \\\\xi$</annotation>\\n </semantics></math> is unbounded in <span></span><math>\\n <semantics>\\n <mi>ξ</mi>\\n <annotation>$\\\\xi$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 4\",\"pages\":\"388-397\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202400002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了在 ω 1 $\omega _1$ 上的完全正常非真实紧凑空间 ( ω 1 , τ ) $(\omega _1, \tau)$ 的行为,使得对于每一个 γ < ω 1 $\gamma <\omega _1$ , γ $gamma$ 是 τ $\tau$ -开放的,并且 γ + ω $gamma +\omega$ 在马丁最大值下是 τ $\tau$ -封闭的。我们证明存在一个ω 1 $\omega _1$的俱乐部子集D $D$,使得对于δ ∈ acc ( D ) $\delta \ in \operatorname{acc}(D)$ 的固定子集,对于δ + n $\delta +n$ 的所有τ\ $tau$ -open neighborhood N $N$ ,存在η < δ $\eta <\delta$ ,使得对于所有ξ ∈ D ∩ [ η , δ ) $\xi \ in D\cap [\eta, \delta)$ ,N ∩ ξ $N\cap \xi$ 在ξ $\xi$ 中是无界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfectly normal nonrealcompact spaces under Martin's Maximum

We analyze the behavior of a perfectly normal nonrealcompact space ( ω 1 , τ ) $(\omega _1, \tau)$ on ω 1 $\omega _1$ such that for every γ < ω 1 $\gamma <\omega _1$ , γ $\gamma$ is τ $\tau$ -open and γ + ω $\gamma +\omega$ is τ $\tau$ -closed under Martin's Maximum. We show that there exists a club subset D $D$ of ω 1 $\omega _1$ such that for a stationary subset of δ acc ( D ) $\delta \in \operatorname{acc}(D)$ , for all τ $\tau$ -open neighborhood N $N$ of δ + n $\delta +n$ , there exists η < δ $\eta <\delta$ such that for all ξ D [ η , δ ) $\xi \in D\cap [\eta, \delta)$ , N ξ $N\cap \xi$ is unbounded in ξ $\xi$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信