Mathematical Logic Quarterly最新文献

筛选
英文 中文
Expansions of real closed fields with the Banach fixed point property 具有巴拿赫定点特性的实闭域展开
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-15 DOI: 10.1002/malq.202400001
Athipat Thamrongthanyalak
{"title":"Expansions of real closed fields with the Banach fixed point property","authors":"Athipat Thamrongthanyalak","doi":"10.1002/malq.202400001","DOIUrl":"10.1002/malq.202400001","url":null,"abstract":"<p>We study a variant of converses of the Banach fixed point theorem and its connection to tameness in expansions of a real closed field. An expansion of a real closed ordered field is said to have the Banach fixed point property when, for every locally closed definable set <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math>, if every definable contraction on <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> has a fixed point, then <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> is closed. Let <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathfrak {R}$</annotation>\u0000 </semantics></math> be an expansion of a real closed field. We prove that if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathfrak {R}$</annotation>\u0000 </semantics></math> has an o-minimal open core, then it has the Banach fixed point property; and if <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathfrak {R}$</annotation>\u0000 </semantics></math> is definably complete and has the Banach fixed point property, then it has a locally o-minimal open core.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hilbert's tenth problem for lacunary entire functions of finite order 希尔伯特关于有限阶缺陷全函数的第十个问题
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-06 DOI: 10.1002/malq.202300046
Natalia Garcia-Fritz, Hector Pasten
{"title":"Hilbert's tenth problem for lacunary entire functions of finite order","authors":"Natalia Garcia-Fritz,&nbsp;Hector Pasten","doi":"10.1002/malq.202300046","DOIUrl":"10.1002/malq.202300046","url":null,"abstract":"<p>In the context of Hilbert's tenth problem, an outstanding open case is that of complex entire functions in one variable. A negative solution is known for polynomials (by Denef) and for exponential polynomials of finite order (by Chompitaki, Garcia-Fritz, Pasten, Pheidas, and Vidaux), but no other case is known for rings of complex entire functions in one variable. We prove a negative solution to the analogue of Hilbert's tenth problem for rings of complex entire functions of finite order having lacunary power series expansion at the origin.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the implicative-infimum subreducts of weak Heyting algebras 论弱海廷代数的蕴涵-最小子项
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-06 DOI: 10.1002/malq.202300021
Sergio Celani, Hernán J. San Martín
{"title":"On the implicative-infimum subreducts of weak Heyting algebras","authors":"Sergio Celani,&nbsp;Hernán J. San Martín","doi":"10.1002/malq.202300021","DOIUrl":"10.1002/malq.202300021","url":null,"abstract":"<p>The variety of weak Heyting algebras was introduced in 2005 by Celani and Jansana. This corresponds to the strict implication fragment of the normal modal logic <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> which is also known as the subintuitionistic local consequence of the class of all Kripke models. Subresiduated lattices are a generalization of Heyting algebras and particular cases of weak Heyting algebras. They were introduced during the 1970s by Epstein and Horn as an algebraic counterpart of some logics with strong implication previously studied by Lewy and Hacking. In this paper we study the class of implicative-infimum subreducts of weak Heyting algebras. In particular, we prove that this class is a variety by giving an equational base for it. We also present a topological duality for the algebraic category whose objects are the implicative-infimum subreducts of subresiduated lattices.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of Ramsey Choice principles in ZF $mathsf {ZF}$ 拉姆齐选择原则对 ZF$mathsf {ZF}$ 的影响
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-06 DOI: 10.1002/malq.202300024
Lorenz Halbeisen, Riccardo Plati, Saharon Shelah
{"title":"Implications of Ramsey Choice principles in \u0000 \u0000 ZF\u0000 $mathsf {ZF}$","authors":"Lorenz Halbeisen,&nbsp;Riccardo Plati,&nbsp;Saharon Shelah","doi":"10.1002/malq.202300024","DOIUrl":"10.1002/malq.202300024","url":null,"abstract":"<p>The Ramsey Choice principle for families of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-element sets, denoted <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>RC</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{RC}_{n}$</annotation>\u0000 </semantics></math>, states that every infinite set <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> has an infinite subset <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Y</mi>\u0000 <mo>⊆</mo>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$Ysubseteq X$</annotation>\u0000 </semantics></math> with a choice function on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>Y</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mi>z</mi>\u0000 <mo>⊆</mo>\u0000 <mi>Y</mi>\u0000 <mo>:</mo>\u0000 <mo>|</mo>\u0000 <mi>z</mi>\u0000 <mo>|</mo>\u0000 <mo>=</mo>\u0000 <mi>n</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$[Y]^n:= lbrace zsubseteq Y: |z| = nrbrace$</annotation>\u0000 </semantics></math>. We investigate for which positive integers <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> the implication <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>RC</mo>\u0000 <mi>m</mi>\u0000 </msub>\u0000 <mo>⇒</mo>\u0000 <msub>\u0000 <mo>RC</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$operatorname{RC}_{m} implies operatorname{RC}_{n}$</annotation>\u0000 </semantics></math> is provable in <span></span><math>\u0000 <semantics>\u0000 <mi>ZF</mi>\u0000 ","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On dense, locally finite subgroups of the automorphism group of certain homogeneous structures 论某些均质结构自变群的密集局部有限子群
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-02 DOI: 10.1002/malq.202200060
Gábor Sági
{"title":"On dense, locally finite subgroups of the automorphism group of certain homogeneous structures","authors":"Gábor Sági","doi":"10.1002/malq.202200060","DOIUrl":"10.1002/malq.202200060","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> be a countable structure such that each finite partial isomorphism of it can be extended to an automorphism. Evans asked if the age (set of finite substructures) of <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> satisfies Hrushovski's extension property, then is it true that the automorphism group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>Aut</mo>\u0000 </mrow>\u0000 <mo>(</mo>\u0000 <mi>A</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$operatorname{{it Aut}}(mathcal {A})$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> contains a dense, locally finite subgroup? In order to investigate this question, in the previous decades a coherent variant of Hrushovski's extension property has been introduced and studied. Among other results, we provide equivalent conditions for the existence of a dense, locally finite subgroup of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>Aut</mo>\u0000 </mrow>\u0000 <mo>(</mo>\u0000 <mi>A</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$operatorname{{it Aut}}(mathcal {A})$</annotation>\u0000 </semantics></math> in terms of a (new) variant of the coherent extension property. We also compare our notion with other coherent extension properties.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalisation of Läuchli's lemma 拉乌奇里定理的一般化
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-07-02 DOI: 10.1002/malq.202300031
Nattapon Sonpanow, Pimpen Vejjajiva
{"title":"A generalisation of Läuchli's lemma","authors":"Nattapon Sonpanow,&nbsp;Pimpen Vejjajiva","doi":"10.1002/malq.202300031","DOIUrl":"10.1002/malq.202300031","url":null,"abstract":"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\u0000 <semantics>\u0000 <mi>AC</mi>\u0000 <annotation>$mathsf {AC}$</annotation>\u0000 </semantics></math>) that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mi>i</mi>\u0000 <mi>n</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>ℵ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 </msup>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mi>i</mi>\u0000 <mi>n</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$(2^{textup {fin}(mathfrak {m})})^{aleph _0} = 2^{textup {fin}(mathfrak {m})}$</annotation>\u0000 </semantics></math> and, consequently, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </msup>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </msup>\u0000 </msup>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </msup>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$2^{2^{mathfrak {m}}}+2^{2^{mathfrak {m}}} = 2^{2^{mathfrak {m}}}$</annotation>\u0000 </semantics></math> for all infinite cardinals <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$mathfrak {m}$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mi>i</mi>\u0000 <mi>n</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$textup {fin}(mathfrak {","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141531549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contents: (Math. Log. Quart. 1/2024) 内容:(数学逻辑学季刊》1/2024)。
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-06-06 DOI: 10.1002/malq.202410001
{"title":"Contents: (Math. Log. Quart. 1/2024)","authors":"","doi":"10.1002/malq.202410001","DOIUrl":"https://doi.org/10.1002/malq.202410001","url":null,"abstract":"","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202410001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Division of Logic, Methodology and Philosophy of Science and Technology of the International Union of History and Philosophy of Science and Technology Bulletin no. 24 国际科技史与科技哲学联合会逻辑学、方法论与科技哲学分部第 24 期公报
IF 0.3 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-06-06 DOI: 10.1002/malq.202400004
{"title":"Division of Logic, Methodology and Philosophy of Science and Technology of the International Union of History and Philosophy of Science and Technology Bulletin no. 24","authors":"","doi":"10.1002/malq.202400004","DOIUrl":"https://doi.org/10.1002/malq.202400004","url":null,"abstract":"<p><i>Assessors</i>:</p><p>Hanne Andersen, Copenhagen, Denmark. Rachel Ankeny, Adelaide, Australia. Valeria de Paiva, Mountain View CA, U.S.A. Gerhard Heinzmann, Nancy, France. Concha Martinez Vidal, Santiago de Compostela, Spain. Tomáš Marvan, Prague, Czech Republic. Dhruv Raina, Delhi, India. Cheng Sumei, Shanghai, China. Alasdair Urquhart, Toronto, Canada. Andrés Villaveces, Bogotá, Colombia.</p><p><i>Former Presidents: († = deceased)</i></p><p>Menachem Magidor (Israel), Elliott Sober (United States of America), Wilfrid Hodges (United Kingdom), Adolf Grünbaum† (United States of America), Michael Rabin (United States of America), Wesley Salmon† (United States of America), Jens-Erik Fenstad† (Norway), Lawrence J. Cohen† (United Kingdom), Dana S. Scott (United States of America), Jerzy Łoś† (Poland). Patrick Suppes† (United States of America), Jaakko Hintikka† (Finland &amp; United States of America), Andrzej Mostowski† (Poland), Stephan Körner† (United Kingdom), Yehoshua Bar-Hillel† (Israel), Georg Henrik von Wright† (Finland), Stephen C. Kleene† (United States of America).</p><p>Former president Jens Erik Fenstad passed away on 14 April 2020.</p><p>The <i>Executive Committee</i> of the Division is composed of the President, the Vice-Presidents, the Secretary-General, the Treasurer, and the immediate Past President. The <i>Council</i> consists of the Executive Committee plus the Assessors.</p><p><i>Ordinary Members Present</i> (number of votes and names of delegates in parentheses; total votes: 68 before <b>Agenda item 5</b>; 69 after <b>Agenda item 5</b>). Argentina (2; 1 after <b>Agenda item 5</b>; Víctor Rodríguez), Australia (3; Pamela Robinson), Austria (1; Georg Schiemer), Belgium (1; Peter Verdée), Brazil (2; Elaine Pimentel), Canada (3; Zeyad El Nabolsy), P. R. China (3; Chen Bo), Czech Republic (2; Libor Behounek, Robin Kopecký), Denmark (2; Magdalena Malecka), Estonia (1; Peeter Müürsepp), Finland (2; Uskali Müki), France (4; Andrew Arana, Paola Cantu, Karine Chemla, Gerhard Heinzmann), Germany (4; Benedikt Löwe), Iran (1; Benedikt Löwe), Italy (4; Daniele Molinini), Japan (4; Mitsuhiro Okada), Republic of Korea (2; Insok Ko), Mexico (2; Atocha Aliseda, Ambrosio Velasco-Gómez), The Netherlands (2; Benedikt Löwe), Poland (2; Piotr Błaszczyk), Romania (1; Sorin Costreie), Russian Federation (3; Ilya Kasavin, Andrei Rodin, Lada Shipovalova), South Africa (1; Sean Muller), Spain (2; José A. Díez Calzada), Sweden (3; Valentin Goranko), Taiwan (2; Husan-Chih Lin, Kok-Yong Lee), United Kingdom (4; Robin Hendry), and United States of America (5; Hasok Chang, Philip Kircher, Helen Longino). After <b>Agenda item 5</b>, the number of votes of Argentina was reduced to 1 and the new Ordinary Member Portugal (2; João Luis Cordovil, Joan Bertran-San-Millán) was admitted; therefore, the number of votes of ordinary members increased by one.</p><p><i>Ordinary Members Absent</i>. Eire (cf. <b>Agenda item 5</b>), Hungary (1), India (1), Israel (1), Moldov","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202400004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weak theory of building blocks 积木的弱理论
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-05-27 DOI: 10.1002/malq.202300015
Juvenal Murwanashyaka
{"title":"A weak theory of building blocks","authors":"Juvenal Murwanashyaka","doi":"10.1002/malq.202300015","DOIUrl":"10.1002/malq.202300015","url":null,"abstract":"<p>We apply the mereological concept of parthood to the coding of finite sequences. We propose a first-order theory in which coding finite sequences is intuitive and transparent. We compare this theory with Robinson arithmetic, adjunctive set theory and weak theories of finite strings and finite trees using interpretability.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compactness in team semantics 团队语义的紧凑性
IF 0.4 4区 数学
Mathematical Logic Quarterly Pub Date : 2024-05-27 DOI: 10.1002/malq.202200072
Joni Puljujärvi, Davide Emilio Quadrellaro
{"title":"Compactness in team semantics","authors":"Joni Puljujärvi,&nbsp;Davide Emilio Quadrellaro","doi":"10.1002/malq.202200072","DOIUrl":"10.1002/malq.202200072","url":null,"abstract":"<p>We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信