求助PDF
{"title":"Wadge degrees of \n \n \n Δ\n 2\n 0\n \n $\\mathbf{\\Delta }^0_2$\n omega-powers","authors":"Olivier Finkel, Dominique Lecomte","doi":"10.1002/malq.202400024","DOIUrl":null,"url":null,"abstract":"<p>We provide, for each natural number <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> and each class among <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$D_n(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̌</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\check{D}_n(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <mi>⊕</mi>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̌</mo>\n </mover>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$D_{2n+1}(\\mathbf {\\Sigma }^0_1)\\oplus \\check{D}_{2n+1}(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, a regular language whose associated omega-power is complete for this class.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 3","pages":"286-293"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
We provide, for each natural number
n
$n$
and each class among
D
n
(
Σ
1
0
)
$D_n(\mathbf {\Sigma }^0_1)$
,
D
̌
n
(
Σ
1
0
)
$\check{D}_n(\mathbf {\Sigma }^0_1)$
,
D
2
n
+
1
(
Σ
1
0
)
⊕
D
̌
2
n
+
1
(
Σ
1
0
)
$D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$
, a regular language whose associated omega-power is complete for this class.
Δ20$mathbf\{Delta }^0_2$ Ω-幂的瓦奇度
我们为每个自然数和ⅣⅤ类中的每个类提供一种正则表达式语言,其相关的Ω-幂对该类来说是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。