Filter-Menger set of reals in Cohen extensions

Pub Date : 2024-07-15 DOI:10.1002/malq.202300008
Hang Zhang, Shuguo Zhang
{"title":"Filter-Menger set of reals in Cohen extensions","authors":"Hang Zhang,&nbsp;Shuguo Zhang","doi":"10.1002/malq.202300008","DOIUrl":null,"url":null,"abstract":"<p>We prove that for every ultrafilter <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$\\mathcal {U}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> there exists a filter <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mrow>\n <mo>&lt;</mo>\n <mi>ω</mi>\n </mrow>\n </msup>\n <annotation>$2^{&amp;lt;\\omega }$</annotation>\n </semantics></math> which is <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$\\mathcal {U}$</annotation>\n </semantics></math>-Menger and <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>b</mi>\n <mo>(</mo>\n <mi>U</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\chi (\\mathcal {F})=\\mathfrak {b}(\\mathcal {U})$</annotation>\n </semantics></math>. We show that in the Cohen model there exists such <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$\\mathfrak {d}$</annotation>\n </semantics></math> that is not Hurewicz in the <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-Cohen model where <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>&gt;</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\kappa &amp;gt;\\omega _{1}$</annotation>\n </semantics></math> is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mo>&lt;</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\mathfrak {b}&amp;lt;\\mathfrak {d}$</annotation>\n </semantics></math>. We also study the filter <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> generated by the set of mutually Cohen reals in the <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-Cohen model. We prove that <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\mathfrak {b}(\\mathcal {F})=\\omega _{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\mathfrak {d}(\\mathcal {F})=\\kappa$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <msup>\n <mo>≤</mo>\n <mo>∗</mo>\n </msup>\n <annotation>$\\mathord {\\le ^{*}}$</annotation>\n </semantics></math>-dominating family in the ground model is <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-unbounded in extension. Two questions are posed.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for every ultrafilter U $\mathcal {U}$ on ω $\omega$ there exists a filter F $\mathcal {F}$ on 2 < ω $2^{&lt;\omega }$ which is U $\mathcal {U}$ -Menger and χ ( F ) = b ( U ) $\chi (\mathcal {F})=\mathfrak {b}(\mathcal {U})$ . We show that in the Cohen model there exists such F $\mathcal {F}$ which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character d $\mathfrak {d}$ that is not Hurewicz in the κ $\kappa$ -Cohen model where κ > ω 1 $\kappa &gt;\omega _{1}$ is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with b < d $\mathfrak {b}&lt;\mathfrak {d}$ . We also study the filter F $\mathcal {F}$ generated by the set of mutually Cohen reals in the κ $\kappa$ -Cohen model. We prove that b ( F ) = ω 1 $\mathfrak {b}(\mathcal {F})=\omega _{1}$ and d ( F ) = κ $\mathfrak {d}(\mathcal {F})=\kappa$ and every $\mathord {\le ^{*}}$ -dominating family in the ground model is F $\mathcal {F}$ -unbounded in extension. Two questions are posed.

分享
查看原文
科恩扩展中的滤门格尔实数集
我们证明,对于上的每一个超滤波器,都存在一个滤波器,它是-门格尔和 。我们用 Nyikos [10] 的构造证明,在科恩模型中存在这样的高滤波器。这回答了达斯的一个问题[2, 问题 7]。我们证明,在-科恩模型中,存在一个不可数正则表达式的门格尔滤波器的特征不是胡勒维茨。这表明对埃尔南德斯-古铁雷斯和塞普蒂奇[3, 问题 2.8]问题的肯定回答与 .我们还研究了-科恩模型中互为科恩有数集所产生的滤波器。我们证明了地面模型中的 和 以及 每个主族在广延上都是无界的。我们提出了两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信