{"title":"邻最小结构和半代数群中可定义局部同态的扩展","authors":"Eliana Barriga","doi":"10.1002/malq.202300028","DOIUrl":null,"url":null,"abstract":"<p>We state conditions for which a definable local homomorphism between two locally definable groups <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>G</mi>\n <mo>′</mo>\n </msup>\n <annotation>$\\mathcal {G^{\\prime }}$</annotation>\n </semantics></math> can be uniquely extended when <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> not necessarily abelian over a sufficiently saturated real closed field <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>; namely, that the o-minimal universal covering group <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is an open locally definable subgroup of <span></span><math>\n <semantics>\n <mover>\n <mrow>\n <mi>H</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <mn>0</mn>\n </msup>\n </mrow>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{H(R)^{0}}$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic group <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>, we describe <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic groups (Theorem 3.4).</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 3","pages":"267-274"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300028","citationCount":"0","resultStr":"{\"title\":\"Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups\",\"authors\":\"Eliana Barriga\",\"doi\":\"10.1002/malq.202300028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We state conditions for which a definable local homomorphism between two locally definable groups <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>G</mi>\\n <mo>′</mo>\\n </msup>\\n <annotation>$\\\\mathcal {G^{\\\\prime }}$</annotation>\\n </semantics></math> can be uniquely extended when <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math> is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> not necessarily abelian over a sufficiently saturated real closed field <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>; namely, that the o-minimal universal covering group <span></span><math>\\n <semantics>\\n <mover>\\n <mi>G</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\widetilde{G}$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is an open locally definable subgroup of <span></span><math>\\n <semantics>\\n <mover>\\n <mrow>\\n <mi>H</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>0</mn>\\n </msup>\\n </mrow>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\widetilde{H(R)^{0}}$</annotation>\\n </semantics></math> for some <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-algebraic group <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> over <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>, we describe <span></span><math>\\n <semantics>\\n <mover>\\n <mi>G</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\widetilde{G}$</annotation>\\n </semantics></math> as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-algebraic groups (Theorem 3.4).</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 3\",\"pages\":\"267-274\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups
We state conditions for which a definable local homomorphism between two locally definable groups , can be uniquely extended when is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group not necessarily abelian over a sufficiently saturated real closed field ; namely, that the o-minimal universal covering group of is an open locally definable subgroup of for some -algebraic group (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group over , we describe as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative -algebraic groups (Theorem 3.4).
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.