科恩扩展中的滤门格尔实数集

IF 0.4 4区 数学 Q4 LOGIC
Hang Zhang, Shuguo Zhang
{"title":"科恩扩展中的滤门格尔实数集","authors":"Hang Zhang,&nbsp;Shuguo Zhang","doi":"10.1002/malq.202300008","DOIUrl":null,"url":null,"abstract":"<p>We prove that for every ultrafilter <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$\\mathcal {U}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> there exists a filter <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mrow>\n <mo>&lt;</mo>\n <mi>ω</mi>\n </mrow>\n </msup>\n <annotation>$2^{&amp;lt;\\omega }$</annotation>\n </semantics></math> which is <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$\\mathcal {U}$</annotation>\n </semantics></math>-Menger and <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>b</mi>\n <mo>(</mo>\n <mi>U</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\chi (\\mathcal {F})=\\mathfrak {b}(\\mathcal {U})$</annotation>\n </semantics></math>. We show that in the Cohen model there exists such <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$\\mathfrak {d}$</annotation>\n </semantics></math> that is not Hurewicz in the <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-Cohen model where <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>&gt;</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\kappa &amp;gt;\\omega _{1}$</annotation>\n </semantics></math> is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mo>&lt;</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\mathfrak {b}&amp;lt;\\mathfrak {d}$</annotation>\n </semantics></math>. We also study the filter <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> generated by the set of mutually Cohen reals in the <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>-Cohen model. We prove that <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\mathfrak {b}(\\mathcal {F})=\\omega _{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\mathfrak {d}(\\mathcal {F})=\\kappa$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <msup>\n <mo>≤</mo>\n <mo>∗</mo>\n </msup>\n <annotation>$\\mathord {\\le ^{*}}$</annotation>\n </semantics></math>-dominating family in the ground model is <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-unbounded in extension. Two questions are posed.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"224-232"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filter-Menger set of reals in Cohen extensions\",\"authors\":\"Hang Zhang,&nbsp;Shuguo Zhang\",\"doi\":\"10.1002/malq.202300008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for every ultrafilter <span></span><math>\\n <semantics>\\n <mi>U</mi>\\n <annotation>$\\\\mathcal {U}$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>ω</mi>\\n <annotation>$\\\\omega$</annotation>\\n </semantics></math> there exists a filter <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mo>&lt;</mo>\\n <mi>ω</mi>\\n </mrow>\\n </msup>\\n <annotation>$2^{&amp;lt;\\\\omega }$</annotation>\\n </semantics></math> which is <span></span><math>\\n <semantics>\\n <mi>U</mi>\\n <annotation>$\\\\mathcal {U}$</annotation>\\n </semantics></math>-Menger and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>b</mi>\\n <mo>(</mo>\\n <mi>U</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\chi (\\\\mathcal {F})=\\\\mathfrak {b}(\\\\mathcal {U})$</annotation>\\n </semantics></math>. We show that in the Cohen model there exists such <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$\\\\mathfrak {d}$</annotation>\\n </semantics></math> that is not Hurewicz in the <span></span><math>\\n <semantics>\\n <mi>κ</mi>\\n <annotation>$\\\\kappa$</annotation>\\n </semantics></math>-Cohen model where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>&gt;</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\kappa &amp;gt;\\\\omega _{1}$</annotation>\\n </semantics></math> is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mo>&lt;</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$\\\\mathfrak {b}&amp;lt;\\\\mathfrak {d}$</annotation>\\n </semantics></math>. We also study the filter <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> generated by the set of mutually Cohen reals in the <span></span><math>\\n <semantics>\\n <mi>κ</mi>\\n <annotation>$\\\\kappa$</annotation>\\n </semantics></math>-Cohen model. We prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathfrak {b}(\\\\mathcal {F})=\\\\omega _{1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\mathfrak {d}(\\\\mathcal {F})=\\\\kappa$</annotation>\\n </semantics></math> and every <span></span><math>\\n <semantics>\\n <msup>\\n <mo>≤</mo>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\mathord {\\\\le ^{*}}$</annotation>\\n </semantics></math>-dominating family in the ground model is <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math>-unbounded in extension. Two questions are posed.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 2\",\"pages\":\"224-232\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于上的每一个超滤波器,都存在一个滤波器,它是-门格尔和 。我们用 Nyikos [10] 的构造证明,在科恩模型中存在这样的高滤波器。这回答了达斯的一个问题[2, 问题 7]。我们证明,在-科恩模型中,存在一个不可数正则表达式的门格尔滤波器的特征不是胡勒维茨。这表明对埃尔南德斯-古铁雷斯和塞普蒂奇[3, 问题 2.8]问题的肯定回答与 .我们还研究了-科恩模型中互为科恩有数集所产生的滤波器。我们证明了地面模型中的 和 以及 每个主族在广延上都是无界的。我们提出了两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filter-Menger set of reals in Cohen extensions

We prove that for every ultrafilter U $\mathcal {U}$ on ω $\omega$ there exists a filter F $\mathcal {F}$ on 2 < ω $2^{&lt;\omega }$ which is U $\mathcal {U}$ -Menger and χ ( F ) = b ( U ) $\chi (\mathcal {F})=\mathfrak {b}(\mathcal {U})$ . We show that in the Cohen model there exists such F $\mathcal {F}$ which are tall by using a construction of Nyikos's [10]. These answer a question of Das [2, Problem 7]. We prove that there is a Menger filter of character d $\mathfrak {d}$ that is not Hurewicz in the κ $\kappa$ -Cohen model where κ > ω 1 $\kappa &gt;\omega _{1}$ is uncountable regular. This shows that the positive answer to a question of Hernández-Gutiérrez and Szeptycki [3, Question 2.8] is consistent with b < d $\mathfrak {b}&lt;\mathfrak {d}$ . We also study the filter F $\mathcal {F}$ generated by the set of mutually Cohen reals in the κ $\kappa$ -Cohen model. We prove that b ( F ) = ω 1 $\mathfrak {b}(\mathcal {F})=\omega _{1}$ and d ( F ) = κ $\mathfrak {d}(\mathcal {F})=\kappa$ and every $\mathord {\le ^{*}}$ -dominating family in the ground model is F $\mathcal {F}$ -unbounded in extension. Two questions are posed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信