Δ20$mathbf\{Delta }^0_2$ Ω-幂的瓦奇度

IF 0.4 4区 数学 Q4 LOGIC
Olivier Finkel, Dominique Lecomte
{"title":"Δ20$mathbf\\{Delta }^0_2$ Ω-幂的瓦奇度","authors":"Olivier Finkel,&nbsp;Dominique Lecomte","doi":"10.1002/malq.202400024","DOIUrl":null,"url":null,"abstract":"<p>We provide, for each natural number <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> and each class among <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$D_n(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̌</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\check{D}_n(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>D</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <mi>⊕</mi>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̌</mo>\n </mover>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>Σ</mi>\n <mn>1</mn>\n <mn>0</mn>\n </msubsup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$D_{2n+1}(\\mathbf {\\Sigma }^0_1)\\oplus \\check{D}_{2n+1}(\\mathbf {\\Sigma }^0_1)$</annotation>\n </semantics></math>, a regular language whose associated omega-power is complete for this class.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 3","pages":"286-293"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wadge degrees of \\n \\n \\n Δ\\n 2\\n 0\\n \\n $\\\\mathbf{\\\\Delta }^0_2$\\n omega-powers\",\"authors\":\"Olivier Finkel,&nbsp;Dominique Lecomte\",\"doi\":\"10.1002/malq.202400024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide, for each natural number <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> and each class among <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>D</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>1</mn>\\n <mn>0</mn>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$D_n(\\\\mathbf {\\\\Sigma }^0_1)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>D</mi>\\n <mo>̌</mo>\\n </mover>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>1</mn>\\n <mn>0</mn>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\check{D}_n(\\\\mathbf {\\\\Sigma }^0_1)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>D</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>1</mn>\\n <mn>0</mn>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n <mi>⊕</mi>\\n <msub>\\n <mover>\\n <mi>D</mi>\\n <mo>̌</mo>\\n </mover>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>Σ</mi>\\n <mn>1</mn>\\n <mn>0</mn>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$D_{2n+1}(\\\\mathbf {\\\\Sigma }^0_1)\\\\oplus \\\\check{D}_{2n+1}(\\\\mathbf {\\\\Sigma }^0_1)$</annotation>\\n </semantics></math>, a regular language whose associated omega-power is complete for this class.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 3\",\"pages\":\"286-293\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400024\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们为每个自然数和ⅣⅤ类中的每个类提供一种正则表达式语言,其相关的Ω-幂对该类来说是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wadge degrees of Δ 2 0 $\mathbf{\Delta }^0_2$ omega-powers

We provide, for each natural number n $n$ and each class among D n ( Σ 1 0 ) $D_n(\mathbf {\Sigma }^0_1)$ , D ̌ n ( Σ 1 0 ) $\check{D}_n(\mathbf {\Sigma }^0_1)$ , D 2 n + 1 ( Σ 1 0 ) D ̌ 2 n + 1 ( Σ 1 0 ) $D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$ , a regular language whose associated omega-power is complete for this class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信