The Hartogs–Lindenbaum spectrum of symmetric extensions

Pub Date : 2024-07-16 DOI:10.1002/malq.202300047
Calliope Ryan-Smith
{"title":"The Hartogs–Lindenbaum spectrum of symmetric extensions","authors":"Calliope Ryan-Smith","doi":"10.1002/malq.202300047","DOIUrl":null,"url":null,"abstract":"<p>We expand the classic result that <span></span><math>\n <semantics>\n <msub>\n <mi>AC</mi>\n <mi>WO</mi>\n </msub>\n <annotation>$\\mathsf {AC}_\\mathsf {WO}$</annotation>\n </semantics></math> is equivalent to the statement “For all <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℵ</mi>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>ℵ</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\aleph (X)=\\aleph ^*(X)$</annotation>\n </semantics></math>” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of <span></span><math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. We prove that all such spectra fall into a very rigid pattern.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We expand the classic result that AC WO $\mathsf {AC}_\mathsf {WO}$ is equivalent to the statement “For all X $X$ , ( X ) = ( X ) $\aleph (X)=\aleph ^*(X)$ ” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of ZF $\mathsf {ZF}$ , and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of ZFC $\mathsf {ZFC}$ . We prove that all such spectra fall into a very rigid pattern.

分享
查看原文
对称扩展的哈托格-林登鲍姆谱
我们通过证明更多相关陈述的等价性,扩展了等价于 "对于所有Ⅳ"陈述的经典结果。然后,我们引入了Ⅳ模型的哈托格斯-林登鲍姆谱,并考察了通过Ⅳ模型的对称扩展得到的模型中这些谱的结构。 我们证明,所有这些谱都属于一种非常严格的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信