{"title":"The Hartogs–Lindenbaum spectrum of symmetric extensions","authors":"Calliope Ryan-Smith","doi":"10.1002/malq.202300047","DOIUrl":null,"url":null,"abstract":"<p>We expand the classic result that <span></span><math>\n <semantics>\n <msub>\n <mi>AC</mi>\n <mi>WO</mi>\n </msub>\n <annotation>$\\mathsf {AC}_\\mathsf {WO}$</annotation>\n </semantics></math> is equivalent to the statement “For all <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℵ</mi>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>ℵ</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\aleph (X)=\\aleph ^*(X)$</annotation>\n </semantics></math>” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of <span></span><math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. We prove that all such spectra fall into a very rigid pattern.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We expand the classic result that is equivalent to the statement “For all , ” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of , and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of . We prove that all such spectra fall into a very rigid pattern.