对称扩展的哈托格-林登鲍姆谱

IF 0.4 4区 数学 Q4 LOGIC
Calliope Ryan-Smith
{"title":"对称扩展的哈托格-林登鲍姆谱","authors":"Calliope Ryan-Smith","doi":"10.1002/malq.202300047","DOIUrl":null,"url":null,"abstract":"<p>We expand the classic result that <span></span><math>\n <semantics>\n <msub>\n <mi>AC</mi>\n <mi>WO</mi>\n </msub>\n <annotation>$\\mathsf {AC}_\\mathsf {WO}$</annotation>\n </semantics></math> is equivalent to the statement “For all <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℵ</mi>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>ℵ</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\aleph (X)=\\aleph ^*(X)$</annotation>\n </semantics></math>” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of <span></span><math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>. We prove that all such spectra fall into a very rigid pattern.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"210-223"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300047","citationCount":"0","resultStr":"{\"title\":\"The Hartogs–Lindenbaum spectrum of symmetric extensions\",\"authors\":\"Calliope Ryan-Smith\",\"doi\":\"10.1002/malq.202300047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We expand the classic result that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>AC</mi>\\n <mi>WO</mi>\\n </msub>\\n <annotation>$\\\\mathsf {AC}_\\\\mathsf {WO}$</annotation>\\n </semantics></math> is equivalent to the statement “For all <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℵ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>ℵ</mi>\\n <mo>∗</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\aleph (X)=\\\\aleph ^*(X)$</annotation>\\n </semantics></math>” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of <span></span><math>\\n <semantics>\\n <mi>ZFC</mi>\\n <annotation>$\\\\mathsf {ZFC}$</annotation>\\n </semantics></math>. We prove that all such spectra fall into a very rigid pattern.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 2\",\"pages\":\"210-223\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300047\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们通过证明更多相关陈述的等价性,扩展了等价于 "对于所有Ⅳ"陈述的经典结果。然后,我们引入了Ⅳ模型的哈托格斯-林登鲍姆谱,并考察了通过Ⅳ模型的对称扩展得到的模型中这些谱的结构。 我们证明,所有这些谱都属于一种非常严格的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hartogs–Lindenbaum spectrum of symmetric extensions

We expand the classic result that AC WO $\mathsf {AC}_\mathsf {WO}$ is equivalent to the statement “For all X $X$ , ( X ) = ( X ) $\aleph (X)=\aleph ^*(X)$ ” by proving the equivalence of many more related statements. Then, we introduce the Hartogs–Lindenbaum spectrum of a model of ZF $\mathsf {ZF}$ , and inspect the structure of these spectra in models that are obtained by a symmetric extension of a model of ZFC $\mathsf {ZFC}$ . We prove that all such spectra fall into a very rigid pattern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信