Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups

Pub Date : 2024-07-17 DOI:10.1002/malq.202300028
Eliana Barriga
{"title":"Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups","authors":"Eliana Barriga","doi":"10.1002/malq.202300028","DOIUrl":null,"url":null,"abstract":"<p>We state conditions for which a definable local homomorphism between two locally definable groups <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>G</mi>\n <mo>′</mo>\n </msup>\n <annotation>$\\mathcal {G^{\\prime }}$</annotation>\n </semantics></math> can be uniquely extended when <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> not necessarily abelian over a sufficiently saturated real closed field <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>; namely, that the o-minimal universal covering group <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is an open locally definable subgroup of <span></span><math>\n <semantics>\n <mover>\n <mrow>\n <mi>H</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <mn>0</mn>\n </msup>\n </mrow>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{H(R)^{0}}$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic group <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>, we describe <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic groups (Theorem 3.4).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We state conditions for which a definable local homomorphism between two locally definable groups G $\mathcal {G}$ , G $\mathcal {G^{\prime }}$ can be uniquely extended when G $\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G $G$ not necessarily abelian over a sufficiently saturated real closed field R $R$ ; namely, that the o-minimal universal covering group G $\widetilde{G}$ of G $G$ is an open locally definable subgroup of H ( R ) 0 $\widetilde{H(R)^{0}}$ for some R $R$ -algebraic group H $H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G $G$ over R $R$ , we describe G $\widetilde{G}$ as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative R $R$ -algebraic groups (Theorem 3.4).

分享
查看原文
邻最小结构和半代数群中可定义局部同态的扩展
我们说明了两个局部可定义群 , 之间的可定义局部同态在简单相连时可以唯一扩展的条件(定理 2.1)。作为这一结果的应用,我们得到了 [3, 定理 9.1] 的简便证明(参见推论 2.3)。我们还证明了 [3,定理 10.2] 对于在充分饱和实闭域上的任何可定连通可定紧密半代数群(不一定是无性的)也是成立的;即对于某个-代数群,它的 o-minimal 通用覆盖群是它的一个开放局部可定子群(定理 3.3)。最后,对于一个在 上的无性定义相连半代数群,我们将其描述为交换-代数群的 o-minimal 普遍覆盖群的一个局部可定义的扩展子群(定理 3.4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信