Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups

IF 0.4 4区 数学 Q4 LOGIC
Eliana Barriga
{"title":"Extensions of definable local homomorphisms in o-minimal structures and semialgebraic groups","authors":"Eliana Barriga","doi":"10.1002/malq.202300028","DOIUrl":null,"url":null,"abstract":"<p>We state conditions for which a definable local homomorphism between two locally definable groups <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>G</mi>\n <mo>′</mo>\n </msup>\n <annotation>$\\mathcal {G^{\\prime }}$</annotation>\n </semantics></math> can be uniquely extended when <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> not necessarily abelian over a sufficiently saturated real closed field <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>; namely, that the o-minimal universal covering group <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is an open locally definable subgroup of <span></span><math>\n <semantics>\n <mover>\n <mrow>\n <mi>H</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <mn>0</mn>\n </msup>\n </mrow>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{H(R)^{0}}$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic group <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>, we describe <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\widetilde{G}$</annotation>\n </semantics></math> as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-algebraic groups (Theorem 3.4).</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 3","pages":"267-274"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We state conditions for which a definable local homomorphism between two locally definable groups G $\mathcal {G}$ , G $\mathcal {G^{\prime }}$ can be uniquely extended when G $\mathcal {G}$ is simply connected (Theorem 2.1). As an application of this result we obtain an easy proof of [3, Theorem 9.1] (cf. Corollary 2.3). We also prove that [3, Theorem 10.2] also holds for any definably connected definably compact semialgebraic group G $G$ not necessarily abelian over a sufficiently saturated real closed field R $R$ ; namely, that the o-minimal universal covering group G $\widetilde{G}$ of G $G$ is an open locally definable subgroup of H ( R ) 0 $\widetilde{H(R)^{0}}$ for some R $R$ -algebraic group H $H$ (Theorem 3.3). Finally, for an abelian definably connected semialgebraic group G $G$ over R $R$ , we describe G $\widetilde{G}$ as a locally definable extension of subgroups of the o-minimal universal covering groups of commutative R $R$ -algebraic groups (Theorem 3.4).

邻最小结构和半代数群中可定义局部同态的扩展
我们说明了两个局部可定义群 , 之间的可定义局部同态在简单相连时可以唯一扩展的条件(定理 2.1)。作为这一结果的应用,我们得到了 [3, 定理 9.1] 的简便证明(参见推论 2.3)。我们还证明了 [3,定理 10.2] 对于在充分饱和实闭域上的任何可定连通可定紧密半代数群(不一定是无性的)也是成立的;即对于某个-代数群,它的 o-minimal 通用覆盖群是它的一个开放局部可定子群(定理 3.3)。最后,对于一个在 上的无性定义相连半代数群,我们将其描述为交换-代数群的 o-minimal 普遍覆盖群的一个局部可定义的扩展子群(定理 3.4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信