Expansions of real closed fields with the Banach fixed point property

IF 0.4 4区 数学 Q4 LOGIC
Athipat Thamrongthanyalak
{"title":"Expansions of real closed fields with the Banach fixed point property","authors":"Athipat Thamrongthanyalak","doi":"10.1002/malq.202400001","DOIUrl":null,"url":null,"abstract":"<p>We study a variant of converses of the Banach fixed point theorem and its connection to tameness in expansions of a real closed field. An expansion of a real closed ordered field is said to have the Banach fixed point property when, for every locally closed definable set <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>, if every definable contraction on <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> has a fixed point, then <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> is closed. Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> be an expansion of a real closed field. We prove that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> has an o-minimal open core, then it has the Banach fixed point property; and if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> is definably complete and has the Banach fixed point property, then it has a locally o-minimal open core.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"197-204"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variant of converses of the Banach fixed point theorem and its connection to tameness in expansions of a real closed field. An expansion of a real closed ordered field is said to have the Banach fixed point property when, for every locally closed definable set E $E$ , if every definable contraction on E $E$ has a fixed point, then E $E$ is closed. Let R $\mathfrak {R}$ be an expansion of a real closed field. We prove that if R $\mathfrak {R}$ has an o-minimal open core, then it has the Banach fixed point property; and if R $\mathfrak {R}$ is definably complete and has the Banach fixed point property, then it has a locally o-minimal open core.

具有巴拿赫定点特性的实闭域展开
我们研究巴拿赫定点定理会话的一个变体及其与实闭域展开中的驯服性的联系。对于每个局部封闭的可定义集合 , 如果其上的每个可定义收缩都有一个定点,则称实闭有序域的展开具有巴拿赫定点性质。设 是一个实封闭域的展开式。我们证明,如果有一个 o-minimal 开核,那么它具有巴拿赫定点性质;如果是可定义完全且具有巴拿赫定点性质,那么它有一个局部 o-minimal 开核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信