{"title":"Expansions of real closed fields with the Banach fixed point property","authors":"Athipat Thamrongthanyalak","doi":"10.1002/malq.202400001","DOIUrl":null,"url":null,"abstract":"<p>We study a variant of converses of the Banach fixed point theorem and its connection to tameness in expansions of a real closed field. An expansion of a real closed ordered field is said to have the Banach fixed point property when, for every locally closed definable set <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>, if every definable contraction on <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> has a fixed point, then <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> is closed. Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> be an expansion of a real closed field. We prove that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> has an o-minimal open core, then it has the Banach fixed point property; and if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathfrak {R}$</annotation>\n </semantics></math> is definably complete and has the Banach fixed point property, then it has a locally o-minimal open core.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"197-204"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202400001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We study a variant of converses of the Banach fixed point theorem and its connection to tameness in expansions of a real closed field. An expansion of a real closed ordered field is said to have the Banach fixed point property when, for every locally closed definable set , if every definable contraction on has a fixed point, then is closed. Let be an expansion of a real closed field. We prove that if has an o-minimal open core, then it has the Banach fixed point property; and if is definably complete and has the Banach fixed point property, then it has a locally o-minimal open core.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.