Apartness relations between propositions

IF 0.4 4区 数学 Q4 LOGIC
Zoltan A. Kocsis
{"title":"Apartness relations between propositions","authors":"Zoltan A. Kocsis","doi":"10.1002/malq.202300055","DOIUrl":null,"url":null,"abstract":"<p>We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded middle, and every Heyting algebra which contains a tight apartness term is in fact a Boolean algebra. This answers a question of Rijke regarding the correct notion of apartness for propositions, and yields a short classification of apartness terms that can occur in a Heyting algebra. We also show that Martin-Löf Type Theory is not able to construct non-trivial apartness relations between propositions.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"414-428"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We classify all apartness relations definable in propositional logics extending intuitionistic logic using Heyting algebra semantics. We show that every Heyting algebra which contains a non-trivial apartness term satisfies the weak law of excluded middle, and every Heyting algebra which contains a tight apartness term is in fact a Boolean algebra. This answers a question of Rijke regarding the correct notion of apartness for propositions, and yields a short classification of apartness terms that can occur in a Heyting algebra. We also show that Martin-Löf Type Theory is not able to construct non-trivial apartness relations between propositions.

命题之间的分离关系
利用和亭代数语义对扩展直觉逻辑的命题逻辑中所有可定义的分离关系进行分类。证明了每一个包含非平凡分离项的Heyting代数都满足弱排中律,每一个包含紧密分离项的Heyting代数实际上都是布尔代数。这回答了Rijke关于命题的分离性的正确概念的问题,并产生了一个可以在Heyting代数中出现的分离性项的简短分类。我们也证明Martin-Löf类型理论不能在命题之间构造非平凡的分离关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信