A note on the cardinality of definable families of sets in o-minimal structures

IF 0.4 4区 数学 Q4 LOGIC
Pablo Andújar Guerrero
{"title":"A note on the cardinality of definable families of sets in o-minimal structures","authors":"Pablo Andújar Guerrero","doi":"10.1002/malq.202300030","DOIUrl":null,"url":null,"abstract":"<p>We prove that any definable family of subsets of a definable infinite set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> in an o-minimal structure has cardinality at most <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|A|$</annotation>\n </semantics></math>. We derive some consequences in terms of counting definable types and existence of definable topological spaces.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 4","pages":"361-366"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that any definable family of subsets of a definable infinite set A $A$ in an o-minimal structure has cardinality at most | A | $|A|$ . We derive some consequences in terms of counting definable types and existence of definable topological spaces.

关于0 -极小结构中可定义集合族的基数性的注记
证明了0 -极小结构中任意可定义无限集a $ a $的可定义子集族的基数不超过| a |$ | a |$。我们从可定义类型的计数和可定义拓扑空间的存在性方面得到了一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信