When cardinals determine the power set: inner models and Härtig quantifier logic

IF 0.4 4区 数学 Q4 LOGIC
Jouko Väänänen, Philip D. Welch
{"title":"When cardinals determine the power set: inner models and Härtig quantifier logic","authors":"Jouko Väänänen,&nbsp;Philip D. Welch","doi":"10.1002/malq.202200030","DOIUrl":null,"url":null,"abstract":"<p>We show that the predicate “<i>x</i> <i>is the power set of</i> <i>y</i>” is <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Σ</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>Card</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Sigma _1(\\operatorname{Card})$</annotation>\n </semantics></math>-definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here <math>\n <semantics>\n <mo>Card</mo>\n <annotation>$\\operatorname{Card}$</annotation>\n </semantics></math> is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>I</mi>\n </msub>\n <annotation>$V_I$</annotation>\n </semantics></math>, the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _{I}$</annotation>\n </semantics></math>, the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _I$</annotation>\n </semantics></math> is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"69 4","pages":"460-471"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the predicate “x is the power set of y” is Σ 1 ( Card ) $\Sigma _1(\operatorname{Card})$ -definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here Card $\operatorname{Card}$ is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to V I $V_I$ , the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and I $\ell _{I}$ , the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) I $\ell _I$ is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.

当基数确定权力集时:内部模型和Härtig量词逻辑
我们证明了谓词“x是y的幂集”是Σ 1(Card)$ \Sigma _1(\operatorname{Card})$ -可定义的,如果V = L[E]是由扩充器的相干序列构造的扩充器模型,只要没有带有伍丁枢机的内部模型。这里Card $\operatorname{Card}$是一个谓词,仅对无限基数为真。由此得出二阶逻辑的有效性可约化为vi $V_I$,即Härtig量词逻辑的有效性集。进一步证明了如果没有L[E]模型的基数强到它的一个不动点,并且l_1 $\ell _{I}$,这个逻辑的Löwenheim个数小于最小弱不可达的δ,则(i) _I$是K的可测基数的极限,(ii)弱覆盖引理在δ处成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信