{"title":"When cardinals determine the power set: inner models and Härtig quantifier logic","authors":"Jouko Väänänen, Philip D. Welch","doi":"10.1002/malq.202200030","DOIUrl":null,"url":null,"abstract":"<p>We show that the predicate “<i>x</i> <i>is the power set of</i> <i>y</i>” is <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Σ</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>Card</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Sigma _1(\\operatorname{Card})$</annotation>\n </semantics></math>-definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here <math>\n <semantics>\n <mo>Card</mo>\n <annotation>$\\operatorname{Card}$</annotation>\n </semantics></math> is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>I</mi>\n </msub>\n <annotation>$V_I$</annotation>\n </semantics></math>, the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _{I}$</annotation>\n </semantics></math>, the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _I$</annotation>\n </semantics></math> is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the predicate “xis the power set ofy” is -definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to , the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and , the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.