When cardinals determine the power set: inner models and Härtig quantifier logic

Pub Date : 2023-09-11 DOI:10.1002/malq.202200030
Jouko Väänänen, Philip D. Welch
{"title":"When cardinals determine the power set: inner models and Härtig quantifier logic","authors":"Jouko Väänänen,&nbsp;Philip D. Welch","doi":"10.1002/malq.202200030","DOIUrl":null,"url":null,"abstract":"<p>We show that the predicate “<i>x</i> <i>is the power set of</i> <i>y</i>” is <math>\n <semantics>\n <mrow>\n <msub>\n <mi>Σ</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>Card</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Sigma _1(\\operatorname{Card})$</annotation>\n </semantics></math>-definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here <math>\n <semantics>\n <mo>Card</mo>\n <annotation>$\\operatorname{Card}$</annotation>\n </semantics></math> is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to <math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mi>I</mi>\n </msub>\n <annotation>$V_I$</annotation>\n </semantics></math>, the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _{I}$</annotation>\n </semantics></math>, the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) <math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>I</mi>\n </msub>\n <annotation>$\\ell _I$</annotation>\n </semantics></math> is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the predicate “x is the power set of y” is Σ 1 ( Card ) $\Sigma _1(\operatorname{Card})$ -definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here Card $\operatorname{Card}$ is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to V I $V_I$ , the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and I $\ell _{I}$ , the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) I $\ell _I$ is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.

分享
查看原文
当基数确定权力集时:内部模型和Härtig量词逻辑
我们证明了谓词“x是y的幂集”是Σ 1(Card)$ \Sigma _1(\operatorname{Card})$ -可定义的,如果V = L[E]是由扩充器的相干序列构造的扩充器模型,只要没有带有伍丁枢机的内部模型。这里Card $\operatorname{Card}$是一个谓词,仅对无限基数为真。由此得出二阶逻辑的有效性可约化为vi $V_I$,即Härtig量词逻辑的有效性集。进一步证明了如果没有L[E]模型的基数强到它的一个不动点,并且l_1 $\ell _{I}$,这个逻辑的Löwenheim个数小于最小弱不可达的δ,则(i) _I$是K的可测基数的极限,(ii)弱覆盖引理在δ处成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信