{"title":"The persistence principle over weak interpretability logic","authors":"Sohei Iwata, Taishi Kurahashi, Yuya Okawa","doi":"10.1002/malq.202200020","DOIUrl":null,"url":null,"abstract":"<p>We focus on the persistence principle over weak interpretability logic. Our object of study is the logic obtained by adding the persistence principle to weak interpretability logic from several perspectives. Firstly, we prove that this logic enjoys a weak version of the fixed point property. Secondly, we introduce a system of sequent calculus and prove the cut-elimination theorem for it. As a consequence, we prove that the logic enjoys the Craig interpolation property. Thirdly, we show that the logic is the natural basis of a generalization of simplified Veltman semantics, and prove that it has the finite frame property with respect to that semantics. Finally, we prove that it is sound and complete with respect to some appropriate arithmetical semantics.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"37-63"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We focus on the persistence principle over weak interpretability logic. Our object of study is the logic obtained by adding the persistence principle to weak interpretability logic from several perspectives. Firstly, we prove that this logic enjoys a weak version of the fixed point property. Secondly, we introduce a system of sequent calculus and prove the cut-elimination theorem for it. As a consequence, we prove that the logic enjoys the Craig interpolation property. Thirdly, we show that the logic is the natural basis of a generalization of simplified Veltman semantics, and prove that it has the finite frame property with respect to that semantics. Finally, we prove that it is sound and complete with respect to some appropriate arithmetical semantics.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.