在bQ1$bQ_1$- c集合的度数上

Pub Date : 2023-11-20 DOI:10.1002/malq.202300033
Roland Omanadze, Irakli Chitaia
{"title":"在bQ1$bQ_1$- c集合的度数上","authors":"Roland Omanadze,&nbsp;Irakli Chitaia","doi":"10.1002/malq.202300033","DOIUrl":null,"url":null,"abstract":"<p>Using properties of simple sets we study <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> are c.e. sets, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a simple set and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <msub>\n <mo>≤</mo>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$A\\le _{{bQ}_{1}}B$</annotation>\n </semantics></math>, then there exists a simple set <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>A</mi>\n </mrow>\n <annotation>$C\\le _1 A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$C\\le _1 B$</annotation>\n </semantics></math>. (2) the c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees (<span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\n \\n \\n b\\n \\n Q\\n 1\\n \\n \\n $bQ_1$\\n -degrees of c.e. sets\",\"authors\":\"Roland Omanadze,&nbsp;Irakli Chitaia\",\"doi\":\"10.1002/malq.202300033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using properties of simple sets we study <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> are c.e. sets, <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a simple set and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <msub>\\n <mo>≤</mo>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$A\\\\le _{{bQ}_{1}}B$</annotation>\\n </semantics></math>, then there exists a simple set <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </msub>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$C\\\\le _1 A$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </msub>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$C\\\\le _1 B$</annotation>\\n </semantics></math>. (2) the c.e. <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees (<span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees are not dense.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用简单集的性质研究了c.e.集的bQ1${bQ}_1$-度。特别地,我们证明了:(1)如果A和B是c.e.集合,A是一个简单集合,且A≤bQ1B$A\le _{{bQ}_{1}}B$,则存在一个简单集合C,使得C≤1A$C\le _1 A$且C≤1B$C\le _1 B$。(2) c.e. bQ1${bQ}_1$-degrees (bQ1${bQ}_1$-degrees)不构成上半格。(3) c.e. bQ1${bQ}_1$-度不致密,但向上致密。(4) bQ1${bQ}_1$-度不密集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On b Q 1 $bQ_1$ -degrees of c.e. sets

Using properties of simple sets we study b Q 1 ${bQ}_1$ -degrees of c.e. sets. In particular, we prove: (1) If A $A$ and B $B$ are c.e. sets, A $A$ is a simple set and A b Q 1 B $A\le _{{bQ}_{1}}B$ , then there exists a simple set C $C$ such that C 1 A $C\le _1 A$ and C 1 B $C\le _1 B$ . (2) the c.e. b Q 1 ${bQ}_1$ -degrees ( b Q 1 ${bQ}_1$ -degrees) do not form an upper semilattice. (3) The c.e. b Q 1 ${bQ}_1$ -degrees are not dense, but are upwards dense. (4) The b Q 1 ${bQ}_1$ -degrees are not dense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信