求助PDF
{"title":"在bQ1$bQ_1$- c集合的度数上","authors":"Roland Omanadze, Irakli Chitaia","doi":"10.1002/malq.202300033","DOIUrl":null,"url":null,"abstract":"<p>Using properties of simple sets we study <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> are c.e. sets, <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a simple set and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <msub>\n <mo>≤</mo>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$A\\le _{{bQ}_{1}}B$</annotation>\n </semantics></math>, then there exists a simple set <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>A</mi>\n </mrow>\n <annotation>$C\\le _1 A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mo>≤</mo>\n <mn>1</mn>\n </msub>\n <mi>B</mi>\n </mrow>\n <annotation>$C\\le _1 B$</annotation>\n </semantics></math>. (2) the c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees (<span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mi>b</mi>\n <mi>Q</mi>\n </mrow>\n <mn>1</mn>\n </msub>\n <annotation>${bQ}_1$</annotation>\n </semantics></math>-degrees are not dense.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"64-72"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\n \\n \\n b\\n \\n Q\\n 1\\n \\n \\n $bQ_1$\\n -degrees of c.e. sets\",\"authors\":\"Roland Omanadze, Irakli Chitaia\",\"doi\":\"10.1002/malq.202300033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using properties of simple sets we study <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees of c.e. sets. In particular, we prove: (1) If <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> are c.e. sets, <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a simple set and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <msub>\\n <mo>≤</mo>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n </msub>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$A\\\\le _{{bQ}_{1}}B$</annotation>\\n </semantics></math>, then there exists a simple set <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </msub>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$C\\\\le _1 A$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </msub>\\n <mi>B</mi>\\n </mrow>\\n <annotation>$C\\\\le _1 B$</annotation>\\n </semantics></math>. (2) the c.e. <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees (<span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees) do not form an upper semilattice. (3) The c.e. <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees are not dense, but are upwards dense. (4) The <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mi>b</mi>\\n <mi>Q</mi>\\n </mrow>\\n <mn>1</mn>\\n </msub>\\n <annotation>${bQ}_1$</annotation>\\n </semantics></math>-degrees are not dense.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 1\",\"pages\":\"64-72\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用