{"title":"Models of \u0000 \u0000 \u0000 VTC\u0000 0\u0000 \u0000 $mathsf {VTC^0}$\u0000 as exponential integer parts","authors":"Emil Jeřábek","doi":"10.1002/malq.202300001","DOIUrl":"https://doi.org/10.1002/malq.202300001","url":null,"abstract":"<p>We prove that (additive) ordered group reducts of nonstandard models of the bounded arithmetical theory <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>VTC</mi>\u0000 <mn>0</mn>\u0000 </msup>\u0000 <annotation>$mathsf {VTC^0}$</annotation>\u0000 </semantics></math> are recursively saturated in a rich language with predicates expressing the integers, rationals, and logarithmically bounded numbers. Combined with our previous results on the construction of the real exponential function on completions of models of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>VTC</mi>\u0000 <mn>0</mn>\u0000 </msup>\u0000 <annotation>$mathsf {VTC^0}$</annotation>\u0000 </semantics></math>, we show that every countable model of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>VTC</mi>\u0000 <mn>0</mn>\u0000 </msup>\u0000 <annotation>$mathsf {VTC^0}$</annotation>\u0000 </semantics></math> is an exponential integer part of a real-closed exponential field.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50117487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}