{"title":"The permutations with n non-fixed points and the subsets with n elements of a set","authors":"Supakun Panasawatwong, Pimpen Vejjajiva","doi":"10.1002/malq.202300005","DOIUrl":null,"url":null,"abstract":"<p>We write <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <annotation>$[\\mathfrak {a}]^n$</annotation>\n </semantics></math> for the cardinalities of the set of permutations with <i>n</i> non-fixed points and the set of subsets with <i>n</i> elements, respectively, of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, where <i>n</i> is a natural number greater than 1. With the Axiom of Choice, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <annotation>$[\\mathfrak {a}]^n$</annotation>\n </semantics></math> are equal for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We show, in <span>ZF</span>, that if <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> is assumed, then <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <mo>≤</mo>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$[\\mathfrak {a}]^n\\le \\mathcal {S}_n(\\mathfrak {a})\\le [\\mathfrak {a}]^{n+1}$</annotation>\n </semantics></math> for any infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. Moreover, the assumption <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> cannot be removed for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>></mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n>2$</annotation>\n </semantics></math> and the superscript <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n+1$</annotation>\n </semantics></math> cannot be replaced by <i>n</i>. We also show under <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> that for any infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})\\le [\\mathfrak {a}]^n$</annotation>\n </semantics></math> implies <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> is Dedekind-infinite.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We write and for the cardinalities of the set of permutations with n non-fixed points and the set of subsets with n elements, respectively, of a set which is of cardinality , where n is a natural number greater than 1. With the Axiom of Choice, and are equal for all infinite cardinals . We show, in ZF, that if is assumed, then for any infinite cardinal . Moreover, the assumption cannot be removed for and the superscript cannot be replaced by n. We also show under that for any infinite cardinal , implies is Dedekind-infinite.