The permutations with n non-fixed points and the subsets with n elements of a set

Pub Date : 2023-08-04 DOI:10.1002/malq.202300005
Supakun Panasawatwong, Pimpen Vejjajiva
{"title":"The permutations with n non-fixed points and the subsets with n elements of a set","authors":"Supakun Panasawatwong,&nbsp;Pimpen Vejjajiva","doi":"10.1002/malq.202300005","DOIUrl":null,"url":null,"abstract":"<p>We write <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <annotation>$[\\mathfrak {a}]^n$</annotation>\n </semantics></math> for the cardinalities of the set of permutations with <i>n</i> non-fixed points and the set of subsets with <i>n</i> elements, respectively, of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, where <i>n</i> is a natural number greater than 1. With the Axiom of Choice, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <annotation>$[\\mathfrak {a}]^n$</annotation>\n </semantics></math> are equal for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. We show, in <span>ZF</span>, that if <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> is assumed, then <math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <mo>≤</mo>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$[\\mathfrak {a}]^n\\le \\mathcal {S}_n(\\mathfrak {a})\\le [\\mathfrak {a}]^{n+1}$</annotation>\n </semantics></math> for any infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>. Moreover, the assumption <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> cannot be removed for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n&gt;2$</annotation>\n </semantics></math> and the superscript <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n+1$</annotation>\n </semantics></math> cannot be replaced by <i>n</i>. We also show under <math>\n <semantics>\n <msub>\n <mtext>AC</mtext>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mbox{\\textsf {AC}}_{\\le n}$</annotation>\n </semantics></math> that for any infinite cardinal <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>a</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\mathcal {S}_n(\\mathfrak {a})\\le [\\mathfrak {a}]^n$</annotation>\n </semantics></math> implies <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> is Dedekind-infinite.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We write S n ( a ) $\mathcal {S}_n(\mathfrak {a})$ and [ a ] n $[\mathfrak {a}]^n$ for the cardinalities of the set of permutations with n non-fixed points and the set of subsets with n elements, respectively, of a set which is of cardinality a $\mathfrak {a}$ , where n is a natural number greater than 1. With the Axiom of Choice, S n ( a ) $\mathcal {S}_n(\mathfrak {a})$ and [ a ] n $[\mathfrak {a}]^n$ are equal for all infinite cardinals a $\mathfrak {a}$ . We show, in ZF, that if AC n $\mbox{\textsf {AC}}_{\le n}$ is assumed, then [ a ] n S n ( a ) [ a ] n + 1 $[\mathfrak {a}]^n\le \mathcal {S}_n(\mathfrak {a})\le [\mathfrak {a}]^{n+1}$ for any infinite cardinal a $\mathfrak {a}$ . Moreover, the assumption AC n $\mbox{\textsf {AC}}_{\le n}$ cannot be removed for n > 2 $n>2$ and the superscript n + 1 $n+1$ cannot be replaced by n. We also show under AC n $\mbox{\textsf {AC}}_{\le n}$ that for any infinite cardinal a $\mathfrak {a}$ , S n ( a ) [ a ] n $\mathcal {S}_n(\mathfrak {a})\le [\mathfrak {a}]^n$ implies a $\mathfrak {a}$ is Dedekind-infinite.

分享
查看原文
集合的n个非不动点的置换和n个元素的子集
我们写S n(a)$\mathcal{S}_n(\mathfrak{a})$和[a]n$[\mathfrak{a}]^n$分别用于具有n个非不动点的排列集和具有n个元素的子集集的基数,基数为$\mathfrak{a}$的集合,其中n是大于1的自然数。关于选择公理,S n(a)$\mathcal{S}_n(\mathfrak{a})$和[a]n$[\mathfrak{a}]^n$对于所有无限基数a$\mathfrak{a}$都相等。我们在ZF中证明,如果假设AC≤n$\mbox{\textsf{AC}}_{\le n}$,则[a]n≤S n(a)≤[a]n+1$[\mathfrak{a}]^n\le\mathcal{S}_n(\mathfrak{a})\le[\mathfrak{a}]^{n+1}$对于任何无穷基数a$\mathfrak{a}$。此外,对于n>;2$n>;2$和上标n+1$n+1$不能用n代替。我们还证明了在AC≤n$\mbox{\textsf{AC}}_,S n(a)≤[a]n$\mathcal{S}_n(\mathfrak{a})\le[\mathfrak{a}]^n$表示$\mathfrak{a}$是Dedekind无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信