关于ZF $\mathsf {ZF}$中的基数不等式

Pub Date : 2023-08-04 DOI:10.1002/malq.202300014
Guozhen Shen
{"title":"关于ZF $\\mathsf {ZF}$中的基数不等式","authors":"Guozhen Shen","doi":"10.1002/malq.202300014","DOIUrl":null,"url":null,"abstract":"<p>It is proved in <math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> (without the axiom of choice) that <math>\n <semantics>\n <mrow>\n <msup>\n <mi>a</mi>\n <mi>n</mi>\n </msup>\n <mo>⩽</mo>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathfrak {a}^n\\leqslant \\mathcal {S}_{n+1}(\\mathfrak {a})$</annotation>\n </semantics></math> for all infinite cardinals <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math> and all natural numbers <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$n\\ne 0$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>a</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_{n+1}(\\mathfrak {a})$</annotation>\n </semantics></math> is the cardinality of the set of permutations with exactly <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n+1$</annotation>\n </semantics></math> non-fixed points of a set which is of cardinality <math>\n <semantics>\n <mi>a</mi>\n <annotation>$\\mathfrak {a}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a cardinal inequality in \\n \\n ZF\\n $\\\\mathsf {ZF}$\",\"authors\":\"Guozhen Shen\",\"doi\":\"10.1002/malq.202300014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is proved in <math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math> (without the axiom of choice) that <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>a</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>⩽</mo>\\n <msub>\\n <mi>S</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathfrak {a}^n\\\\leqslant \\\\mathcal {S}_{n+1}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> for all infinite cardinals <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math> and all natural numbers <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$n\\\\ne 0$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {S}_{n+1}(\\\\mathfrak {a})$</annotation>\\n </semantics></math> is the cardinality of the set of permutations with exactly <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n+1$</annotation>\\n </semantics></math> non-fixed points of a set which is of cardinality <math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$\\\\mathfrak {a}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这是proved in 安迪是 $\ mathsf{安迪是 }$ ( 那没有选择公理》) a n ⩽ S n + 1 ( a) $\ mathfrak {a} ^ n的leqslant \ mathcal {S} {n + 1} (\ mathfrak {a })$ 为所有无限红雀队 a $\ mathfrak {a }$ 和所有自然的数字 n ≠ 0 $ n \ ne 0 $ ,哪里是n+1 (a1美元n+1美元非固定点a $ mathfrak
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a cardinal inequality in ZF $\mathsf {ZF}$

It is proved in ZF $\mathsf {ZF}$ (without the axiom of choice) that a n S n + 1 ( a ) $\mathfrak {a}^n\leqslant \mathcal {S}_{n+1}(\mathfrak {a})$ for all infinite cardinals a $\mathfrak {a}$ and all natural numbers n 0 $n\ne 0$ , where S n + 1 ( a ) $\mathcal {S}_{n+1}(\mathfrak {a})$ is the cardinality of the set of permutations with exactly n + 1 $n+1$ non-fixed points of a set which is of cardinality a $\mathfrak {a}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信