Forcing revisited

Pub Date : 2023-08-01 DOI:10.1002/malq.202000040
Toby Meadows
{"title":"Forcing revisited","authors":"Toby Meadows","doi":"10.1002/malq.202000040","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to propose and explore a general framework within which a wide variety of model construction techniques from contemporary set theory can be subsumed. Taking our inspiration from presheaf constructions in category theory and Boolean ultrapowers, we will show that generic extensions, ultrapowers, extenders and generic ultrapowers can be construed as examples of a single model construction technique. In particular, we will show that Łoś's theorem can be construed as a specific case of Cohen's truth lemma, and we isolate the weakest conditions a filter must satisfy in order for the truth lemma to work.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to propose and explore a general framework within which a wide variety of model construction techniques from contemporary set theory can be subsumed. Taking our inspiration from presheaf constructions in category theory and Boolean ultrapowers, we will show that generic extensions, ultrapowers, extenders and generic ultrapowers can be construed as examples of a single model construction technique. In particular, we will show that Łoś's theorem can be construed as a specific case of Cohen's truth lemma, and we isolate the weakest conditions a filter must satisfy in order for the truth lemma to work.

分享
查看原文
强行重访
本文的目的是提出并探索一个通用的框架,在这个框架内,当代集合论中的各种模型构建技术都可以被纳入其中。从范畴论和布尔超幂中的预heaf构造中获得灵感,我们将证明泛型扩展、超幂、扩展器和泛型超幂可以被解释为单个模型构造技术的例子。特别地,我们将证明Łoś定理可以被解释为Cohen真值引理的一个特定情况,并且我们隔离了滤波器必须满足的最弱条件,才能使真值引引理起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信